胡靖源,马莉,朱成武,梅瑞琼,李伟,周科朝,余志明,魏秋平.微观结构与降解温度对掺硼金刚石薄膜电极电氧化降解活性橙X-GN染料废水的影响[J].表面技术,2018,47(11):17-25.
HU Jing-yuan,MA Li,ZHU Cheng-wu,MEI Rui-qiong,LI Wei,ZHOU Ke-chao,YU Zhi-ming,WEI Qiu-ping.Effects of Microstructure and Degradation Temperature on Electrochemical Oxidation Degradation of Reactive Orange X-GN Dye Wastewater by Boron Doped Diamond[J].Surface Technology,2018,47(11):17-25
微观结构与降解温度对掺硼金刚石薄膜电极电氧化降解活性橙X-GN染料废水的影响
Effects of Microstructure and Degradation Temperature on Electrochemical Oxidation Degradation of Reactive Orange X-GN Dye Wastewater by Boron Doped Diamond
投稿时间:2018-08-26  修订日期:2018-11-20
DOI:10.16490/j.cnki.issn.1001-3660.2018.11.003
中文关键词:  掺硼金刚石  微观结构  沉积时间  电化学氧化降解  活性橙X-GN
英文关键词:boron-doped diamond  microstructure  deposition time  electrochemical oxidation degradation  reactive orange X-GN
基金项目:国家重点研发计划项目(2016YEB0301402)
作者单位
胡靖源 中南大学 a.材料科学与工程学院 b.粉末冶金国家重点实验室,长沙 410083 
马莉 中南大学 b.粉末冶金国家重点实验室,长沙 410083 
朱成武 中南大学 a.材料科学与工程学院 b.粉末冶金国家重点实验室,长沙 410083 
梅瑞琼 中南大学 a.材料科学与工程学院 b.粉末冶金国家重点实验室,长沙 410083 
李伟 中南大学 a.材料科学与工程学院 b.粉末冶金国家重点实验室,长沙 410083 
周科朝 中南大学 b.粉末冶金国家重点实验室,长沙 410083 
余志明 中南大学 a.材料科学与工程学院 b.粉末冶金国家重点实验室,长沙 410083 
魏秋平 中南大学 a.材料科学与工程学院 b.粉末冶金国家重点实验室,长沙 410083 
AuthorInstitution
HU Jing-yuan a.School of Materials Science and Engineering, b.State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 
MA Li b.State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 
ZHU Cheng-wu a.School of Materials Science and Engineering, b.State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 
MEI Rui-qiong a.School of Materials Science and Engineering, b.State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 
LI Wei a.School of Materials Science and Engineering, b.State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 
ZHOU Ke-chao b.State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 
YU Zhi-ming a.School of Materials Science and Engineering, b.State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 
WEI Qiu-ping a.School of Materials Science and Engineering, b.State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 探究电极微观结构与降解温度对掺硼金刚石(BDD)薄膜电极电化学降解活性橙X-GN染料废水的影响。方法 通过HFCVD技术,在铌基体上分别沉积6、12、18 h的BDD薄膜,得到6-BDD/Nb、12-BDD/Nb、18-BDD/Nb电极,将三种电极作为阳极,调控降解温度,分别对活性橙X-GN染料废水进行模拟电化学氧化降解实验。采用扫描电子显微镜、拉曼光谱仪、电化学工作站分析电极性能,用紫外可见光分光光度计测量废水的吸光度。结果 随着沉积时间的延长,BDD薄膜电极表面微观结构改变,晶粒尺寸、表面粗糙度、掺硼量增加,sp3/sp2相比例升高。12-BDD/Nb、18-BDD/Nb电极的有效电极催化活性面积分别是6-BDD/Nb电极的2.6和2.8倍;常温下的降解效率分别提高1.3和1.5倍;能耗分别降低了10.8和22.6 kWh/m3。温度升高,电极的降解速率加快,能耗降低且逐渐趋于一致,最终都低至5.5 kWh/m3。结论 沉积时间增加,可以改变BDD电极微观结构,提高其电化学和氧化降解性能,降解温度升高有利于提升电极的降解速率,并降低能耗。然而升高温度可以有效提升低效电极的降解效率,却对高效电极作用甚微。
英文摘要:
      The work aims to explore the effects of microstructure and degradation on electrochemical oxidation of Reactive Orange X-GN dye wastewater by boron doped diamond (BDD). The BDD films were respectively deposited on the helium sub-strate by HFCVD technology for 6, 12 and 18 hours to obtain 6-BDD/Nb, 12-BDD/Nb, and 18-BDD/Nb electrodes. Then, the three electrodes were used as anodes to simulate the electrochemical oxidative degradation of Reactive Orange X-GN dye wastewater by adjusting the temperature of external degradation, respectively. Electrode performance was analyzed by Scanning Electron Microscope (SEM), Raman spectrometer and electrochemical workstation. The absorbance of wastewater was measured by UV-visible spectrophotometer. As the deposition time prolonged, the surface microstructure of BDD electrodes was changed, but the grain size, surface roughness and boron doped amount were increased, and the sp3/sp2 ratio was increased. The effective catalytic active area of 12-BDD/Nb and 18-BDD/Nb electrodes was 2.6 and 2.8 times of that in the 6-BDD/Nb electrode, respectively. At room temperature, the degradation efficiency increased by 1.3 times and 1.5 times respectively, and energy consumption reduced by 10.8 and 22.6 kWh/m3, respectively. With the increase of d temperature, the degradation rate of the electrode was accelerated, the energy consumption was reduced, and the degradation efficiency of the three electrodes tended to be uniform and below 5.5 kWh/m3 ultimately. With the increase of deposition time, the microstructure of BDD electrode has been changed and the electrochemical and oxidative degradation performance of BDD electrode has been improved. Increasing of degradation temperature is conductive to increasing the degradation rate of electrode and reducing the energy consumption. Increasing the temperature is effective to improve the degradation rate of low-efficiency electrodes, but ineffective for high-efficiency electrodes.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19503753位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号