贾庸,张瑞民,张炜,刘继方,杨正伟.超声热成像对含曲率TC4结构表面裂纹的检测仿真[J].表面技术,2018,47(10):302-308.
JIA Yong,ZHANG Rui-min,ZHANG Wei,LIU Ji-fang,YANG Zheng-wei.Simulation of Surface Crack Detection of TC4 Curvature Structure by Ultrasonic Infrared Thermography[J].Surface Technology,2018,47(10):302-308
超声热成像对含曲率TC4结构表面裂纹的检测仿真
Simulation of Surface Crack Detection of TC4 Curvature Structure by Ultrasonic Infrared Thermography
投稿时间:2018-03-12  修订日期:2018-10-20
DOI:10.16490/j.cnki.issn.1001-3660.2018.10.041
中文关键词:  钛合金TC4  含曲率结构  表面裂纹  超声红外热成像  检测仿真  叶片
英文关键词:titanium alloy TC4  curvature structure  surface crack  ultrasonic infrared thermography  detection simulation  blade
基金项目:国家自然科学基金(51605481,51575516)
作者单位
贾庸 1.火箭军工程大学,西安 710025 
张瑞民 2.火箭军士官学校,山东 青州 262500 
张炜 1.火箭军工程大学,西安 710025 
刘继方 2.火箭军士官学校,山东 青州 262500 
杨正伟 1.火箭军工程大学,西安 710025 
AuthorInstitution
JIA Yong 1. Rocket Force University of Engineering, Xi¢an 710025, China 
ZHANG Rui-min 2. Rocket Force Petty Officer College, Qingzhou 262500, China 
ZHANG Wei 1. Rocket Force University of Engineering, Xi¢an 710025, China 
LIU Ji-fang 2. Rocket Force Petty Officer College, Qingzhou 262500, China 
YANG Zheng-wei 1. Rocket Force University of Engineering, Xi¢an 710025, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 针对含曲率TC4结构的表面裂纹,在分析超声红外热成像检测原理的基础上,进行有限元仿真模拟,研究激励条件对检测效果的影响规律,得到最佳激励参数。方法 首先,设置不同激励幅值、激励频率、激励时间及激励位置等多组方案进行仿真计算。然后基于仿真优化出的最佳激励方案,对含表面裂纹的某航空发动机叶片进行检测,证明仿真结果的准确性。结果 在超声激励过程中,裂纹缺陷区域与非缺陷区域的温差逐渐上升,并在激励结束时达到最大表面温差。随着激励幅值的增加,最大表面温差逐渐上升,上升速率逐渐减小;随着激励频率的增加,最大表面温差逐渐上升,上升速率逐渐增大;随着激励时间的增加,最大表面温差逐渐上升,80 ms后逐渐趋于定值。在裂纹扩展方向上,超声激励施加在构件中央时,检测效果最佳;在垂直于裂纹扩展方向上,超声激励施加在裂纹正下方时,检测效果较差,激励源向两侧移动10~20 mm时,检测效果最佳。通过对含表面裂纹的某航空发动机叶片进行检测试验,可以清晰地看到裂纹信息,检测效果较好,表明仿真结果可靠。结论 研究成果有效地揭示了激励幅值、激励频率、激励时间及激励位置对检测效果的影响规律,为超声红外热成像技术检测含曲率结构表面裂纹的优化奠定了理论基础。
英文摘要:
      The work aims to apply finite element method to detect the surface cracks of TC4 curvature structure based on the principle of ultrasonic infrared thermography and investigate effects of excitation conditions on the detection effect to obtain the optimal excitation parameters. Firstly, several schemes consisting of different excitation amplitudes, different excitation frequencies, different excitation time and different excitation positionswere designed for simulation calculation. Secondly, the surface crack of aero-engine blade was detectedbased on the optimal excitation scheme to verify accuracy of the simulation. During the ultrasonic excitation, the temperature difference between the defect region and the non-defect region increased gradually and the maximum surface temperature difference was reached at the end of the excitation. The maximum surface temperature difference increased gradually and the increasing rate gradually decreased with the increase of excitation amplitude. However, the maximum surface temperature difference increased gradually and the increasing rate gradually increased with the increase of excitation frequency. The maximum surface temperature difference increased gradually and tended to be constant after 80 ms with the increase of excitation time. The detection effect was best when the ultrasonic excitation was applied to the center of the component in the direction of crack propagation. The detection effect was poorer when the ultrasonic excitation was applied just below the crack in the direction perpendicular to the crack propagation direction, but the effect was best when the excitation source was moved to the side for 10~20 mm. From the detection for surface crack of aero-engine blade, the crack information could be clearly seen and the good detection effects indicated the simulation results were reliable. The research results effectively reveal the impact of excitation amplitude, excitation frequency, excitation time and excitation position on the detection effect and lay a theoretical foundation for the detection optimization of surface crack detection of curvature structure by ultrasonic infrared thermography.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20065437位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号