魏小琴,张伦武,肖勇,王艳艳,赵方超,王峙卫.延时电路在高温湿气环境中的腐蚀行为与机理研究[J].表面技术,2018,47(7):197-202.
WEI Xiao-qin,ZHANG Lun-wu,XIAO Yong,WANG Yan-yan,ZHAO Fang-chao,WANG Shi-wei.Corrosion Behaviour and Mechanism of Delay Circuit in High Temperature and Humidity Environment[J].Surface Technology,2018,47(7):197-202
延时电路在高温湿气环境中的腐蚀行为与机理研究
Corrosion Behaviour and Mechanism of Delay Circuit in High Temperature and Humidity Environment
投稿时间:2018-01-19  修订日期:2018-07-20
DOI:10.16490/j.cnki.issn.1001-3660.2018.07.028
中文关键词:  可伐合金  延时电路  高温湿气环境  加速老化试验  腐蚀行为  腐蚀机理
英文关键词:Kovar alloy  delay circuit  high temperature and humidity environment  accelerated aging test  corrosion behavior  corrosion mechanism
基金项目:国防技术基础科研项目(JSHS2015209B002)
作者单位
魏小琴 西南技术工程研究所,重庆 400039 
张伦武 西南技术工程研究所,重庆 400039 
肖勇 西南技术工程研究所,重庆 400039 
王艳艳 西南技术工程研究所,重庆 400039 
赵方超 西南技术工程研究所,重庆 400039 
王峙卫 华东光电集成器件研究所,安徽 蚌埠 233042 
AuthorInstitution
WEI Xiao-qin Southwest Technology and Engineering Research Institute, Chongqing 400039, China 
ZHANG Lun-wu Southwest Technology and Engineering Research Institute, Chongqing 400039, China 
XIAO Yong Southwest Technology and Engineering Research Institute, Chongqing 400039, China 
WANG Yan-yan Southwest Technology and Engineering Research Institute, Chongqing 400039, China 
ZHAO Fang-chao Southwest Technology and Engineering Research Institute, Chongqing 400039, China 
WANG Shi-wei East China Institute of Photo-Electron IC, Bengbu 233042, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高延时电路的贮存环境适应性。方法 在80 ℃、90%RH的湿热条件下,开展延时电路实验室加速老化试验,分别在老化0、97、133 d时取样,检测电性能,分析电路外表面腐蚀损伤特征,测试内部缺陷和多余物,检查腔体密封性,定位失效部位,观测内部芯片腐蚀损伤特征,检测腐蚀产物,分析高温湿气对延时电路外引线-玻璃界面密封性失效与可伐合金基体腐蚀的作用机制。结果 湿热老化133 d时,延时电路输出端3无输出波形。随湿热老化时间的延长,外引线-玻璃界面缝隙腐蚀程度逐渐加深,氦漏率单调上升,壳体密封性逐渐降低乃至失效。外界湿气进入延时电路内部,整个老化周期内部芯片无缺陷,但133 d时电路内腔出现多余物,位于第14外引脚引线柱边缘处,也是导通测试定位的失效点。该引线柱的可伐合金基体与其上的镀金层在高温湿气的作用下,由于电位差形成腐蚀电池,可伐合金作为阴极与湿气和氧发生电化学腐蚀,生成腐蚀产物并覆盖于镀金表面,导致第14外引脚与其上的金键合丝之间开路,延时电路失效。结论 降低延时电路贮存环境湿度,同时改进生产工艺,在金属-玻璃封接界面形成一层厚度适当的致密氧化膜过渡层,可延缓湿气进入电路内部。增大可伐合金基体镀金层或镀镍层厚度,可减小基体发生电化学腐蚀几率,提高延时电路贮存环境适应性。
英文摘要:
      The work aims to improve adaptability of delay circuit to storage environment. Laboratory accelerated aging test of delay circuit was carried out at 80 ℃ and 90% RH, and sampling was done on 0, 97th and 133rd day to test electrical properties, analyze outer surface corrosion damage characteristics, test internal defects and extra material, check sealing of shell, locate faulty parts, observe internal chip corrosion damage characteristics and detect corrosion products, and further analyze mechanism of action of high temperature and humidity on delay circuit outer lead - glass interface sealing failure and Kovar alloy substrate corrosion. There was no output waveform at output 3 on the 133rd day of wet-heat aging. With the extension of wet-heat aging time, crevice corrosion at on outer lead - glass interface gradually worsened, Helium leak rate increased monotonically, and shell sealing gradually reduced and even failed. External moisture entered into the delay circuit, the internal chip was defect-free throughout the aging cycle, but extra material appeared in circuit cavity on the 133rd day and lay on lead post edge of the 14th pin which was the failure point of conduction test positioning. Under the action of high temperature and humidity, a corrosion cell was formed due to potential difference between the Kovar alloy substrate and gold-plated layer thereon. Kovar was electrochemically corroded by moisture and oxygen as a cathode, and corrosion products formed and covered the gold-plated surface, which resulted in open circuit between the 14th pin and gold bonding wire, and the delay circuit failed. Therefore, the moisture entering into the circuit can be delayed by reducing humidity of circuit storage environment, while improving production process and forming a layer of dense oxide film transition layer of appropriate thickness on the metal-glass sealing interface. Thicker Kovar alloy gold-plated or nickel-plated layer can reduce probability of occurrence of electrochemical corrosion of the substrate, and improve adaptability of delay circuit to storage environment.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20095386位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号