黄玲,张进,孙才沅,蒲帅.VN复合渗层的制备及对45#耐磨性能的影响[J].表面技术,2018,47(6):57-62.
HUANG Ling,ZHANG Jin,SUN Cai-yuan,PU Shuai.Preparation of VN Composite Layer and Its Influence on Wear Resistance of 45# Steel[J].Surface Technology,2018,47(6):57-62
VN复合渗层的制备及对45#耐磨性能的影响
Preparation of VN Composite Layer and Its Influence on Wear Resistance of 45# Steel
投稿时间:2017-12-30  修订日期:2018-06-20
DOI:10.16490/j.cnki.issn.1001-3660.2018.06.009
中文关键词:  盐浴渗氮  粉末渗钒  氮化钒渗层  显微结构  耐磨性
英文关键词:salt bath nitriding  vanadium penetration powder method  VN layer  microstructure  wear resistance
基金项目:能源材料电化学科研创新团队校级项目(2015CXTD04);四川省高校油气田材料重点实验室项目(X151516KCL02)
作者单位
黄玲 西南石油大学,成都 610500 
张进 西南石油大学,成都 610500 
孙才沅 西南石油大学,成都 610500 
蒲帅 西南石油大学,成都 610500 
AuthorInstitution
HUANG Ling Southwest Petroleum University, Chengdu 610500, China 
ZHANG Jin Southwest Petroleum University, Chengdu 610500, China 
SUN Cai-yuan Southwest Petroleum University, Chengdu 610500, China 
PU Shuai Southwest Petroleum University, Chengdu 610500, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 对45#强化处理,提高其强韧性和耐磨性。方法 采用热反应扩散法(TRD)对45#基体进行了3种不同的处理,分别为单渗钒、先渗氮后渗钒及先渗钒后渗氮处理。通过扫描电子显微镜、X射线衍射仪进行了微观形貌和物相组成的分析,采用维氏硬度计和旋转摩擦仪对渗层的硬度及耐磨性能进行分析。结果 TRD法处理后,在45#表面形成一层均匀致密的渗层,其中单渗钒层的厚度为3.86 μm,先渗氮后渗钒渗层(先渗氮层)厚度为6.02 μm,先渗钒后渗氮渗层(先渗钒层)厚度为8.44 μm。单渗钒层的硬度值在1306.6HV左右,而氮化钒渗层的硬度在1549.2~1710.4HV左右,均比处理前试样的硬度(295HV)有明显提高。单渗钒层是由α-Fe和VC相组成,而复合渗层是由VN、α-Fe、Fe3N和Fe2C相组成。渗层与基体之间的界面明显,且存在过渡层。单渗钒层试样的平均摩擦系数为0.22,先渗氮层的平均摩擦系数为0.18,先渗钒层的平均摩擦系数为0.20,均小于45#基体的摩擦系数(为0.29)。结论 TRD法处理后形成的VC、VN渗层能提高钢基体的表面硬度和耐磨性,且钒元素和氮元素渗入的先后顺序对渗层的力学性能有影响。先渗氮层试样效果最佳,往复摩擦实验表明,试样的耐磨性顺序为:先渗氮层>先渗钒层>单渗钒层>45#基体。
英文摘要:
      The work aims to improve toughness and wear resistance of 45# steel by performing surface strengthening treatment. Three different kinds of treatment were performed to 45# steel substrate in TRD method, which were single-osmosis vanadation, penetration vanadation after first nitriding and nitriding pre-infiltration. Microstructure, phase composition and hardness of the layer were analyzed with scanning electron microscope, X-ray diffractometer and Vickers hardness tester, respectively. Wear resistance of the coating was analyzed with ball-on-disk configuration. After TRD treatment, a uniform and dense layer took shape on the 45# steel, the single vanadium layer was 3.86 μm thick, the penetrated vanadium layer after first nitriding (first nitriding layer) was 6.02 μm thick, and the nitrided layer after first penetrated vanadium (first vanadizing layer) was 8.44 μm thick. Hardness of single-osmosis vanadium was about 1306.6HV, while that of vanadium nitride layer was 1549.2~ 1710.4HV, obviously higher than that of the pre-treatment sample (295HV). The single-permeable vanadium diffusion layer was composed of α-Fe and VC, while the composite layer was composed of VN, α-Fe, Fe3N and Fe2C. There was visible interface between the diffusion layer and the substrate, and there was transition layer as well. Average friction coefficient of single vanadium sample was 0.22, that of first nitriding layer was 0.18, and that of the first vanadizing layer was 0.20, which were all below that of 45# steel substrate (0.29). The VC and VN layers forming after TRD treatment could improve surface hardness and wear resistance of the substrate. Order of element penetration has effects on mechanical properties of the layer. The reciprocating friction experiment shows that the order of wear resistance is as follows: first nitriding layer>first vanadizing layer>single vanadium layer>45# steel substrate.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20025236位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号