吕东莉,练章华,张涛.基于有限元的20#钢冲蚀磨损行为模拟[J].表面技术,2018,47(6):31-37.
LYU Dong-li,LIAN Zhang-hua,ZHANG Tao.Finite Element-based Simulation on Erosive Wear Behaviour of 20# Steel[J].Surface Technology,2018,47(6):31-37
基于有限元的20#钢冲蚀磨损行为模拟
Finite Element-based Simulation on Erosive Wear Behaviour of 20# Steel
投稿时间:2018-01-22  修订日期:2018-06-20
DOI:10.16490/j.cnki.issn.1001-3660.2018.06.005
中文关键词:  20#钢  固体颗粒  冲蚀磨损  有限元  数值模拟  等效应力  冲蚀形貌
英文关键词:20# steel  solid particle  erosive wear  FEM  numerical simulation  equivalent stress  erosion morphology
基金项目:油气藏地质及开发工程国家重点实验室开放基金(PLN1520);四川省教育厅应用基础研究项目(096)
作者单位
吕东莉 西南石油大学 a.材料科学与工程学院,b.油气藏地质及开发国家重点实验室,成都 610500 
练章华 西南石油大学 b.油气藏地质及开发国家重点实验室,成都 610500 
张涛 西南石油大学 b.油气藏地质及开发国家重点实验室,成都 610500 
AuthorInstitution
LYU Dong-li a.School of Material Science and Engineering, b.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China 
LIAN Zhang-hua b.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China 
ZHANG Tao b.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究固体颗粒对油气井管柱或地面油气输送管道材料的冲蚀磨损规律。方法 通过对石英砂颗粒形状特征抽提了颗粒模型,采用有限元方法模拟了其对20#钢的冲击磨损动力学行为。在不同冲击角度、不同颗粒粒径和不同冲击速度的条件下,分析材料表面冲击破坏应力特征和材料堆积形态。结果 在给定的参数条件下,随着冲击角度的增大,最大等效应力先上升后下降,在40时达到最大值1370 MPa。高角度冲蚀时,表现为凿坑和塑性挤出;低角度冲蚀时,以微切削和犁沟形唇为主,在冲蚀坑两侧及前端有材料堆积,冲蚀坑前端的变形唇高度逐渐增加,在40时达到最大值0.019 85 mm。随着冲击速度的增大,最大等效应力单调增大,冲击坑深度变化不大,但冲击粒子前端的堆积材料明显增多,变形唇片高度增大。当粒径小于0.15 mm时,最大等效应力随粒径的增加而增大,粒径为0.15 mm时达到最大值1410 MPa。当粒径超过0.15 mm时,最大等效应力随粒径的增加而减小。随粒径的增加,冲蚀坑深度缓慢增加,粒子前端的变形唇片高度明显增加。结论 采用有限元方法对石英砂冲击20#钢的动力学行为进行了成功的模拟,获得了冲击角度、冲击速度以及颗粒粒径的变化对20#钢冲击过程中应力分布、冲蚀形貌变化的影响规律。
英文摘要:
      The work aims to study erosive wear law of oil and gas well pipe column or ground oil and gas pipeline materials under the effects of solid particles. The particle model was extracted according to shape characteristics of quartz sand particles, and impact wear dynamic behavior of solid particles on 20# steel was studied in finite element method. Impact stress characteristics and material accumulation form of quartz sand particles were analyzed at different impact angles, different particle sizes and different impact velocities. Provided with given parameters, the maximum equivalent stress first increased and then decreased as the impact angle in-creased, and reached the maximum 1370 MPa at 40°. In case of high-angle erosion, erosion morphology was manifested by chisel pit and plastic extrusion, while in case of low-angle erosion, erosion morphology was dominated by micro-cutting and furrow-shaped lip. The material was accumulated on both sides and the front end of erosion pit, and height of deformed lip in the front of erosion pit gradually increased, and reached the maximum 0.019 85 mm at 40°. As the impact velocity increased, the maximum equivalent stress increased monotonously, and depth of impact pits changed slightly. However, accumulated materials in the front of impact particles increased significantly, and height of deformation lip increased. When the particle size was below 0.15 mm, the maximum equivalent stress increased with the increase of particle size, and reached the maximum value of 1410 MPa at the particle size of 0.15 mm. As the particle diameter exceeded 0.15 mm, the maximum equivalent stress decreased with the increase of particle size. With the increase of particle size, depth of erosion pit increased slowly, and height of deformation lip in the front of particle increased significantly. Dynamic behavior of 20# steel under the impact of quartz sand is successfully simulated in finite element method, law of effects of impact angle, impact velocity and particle size on stress distribution and erosion morphology during the impact process of 20# steel is obtained.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19956336位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号