李海宽,阳培翔,邹耀邦,徐刚.RFID抗干扰镀层制备及其抗干扰性能影响[J].表面技术,2018,47(3):135-139.
LI Hai-kuan,YANG Pei-xiang,ZOU Yao-bang,XU Gang.Preparation of RFID Anti-interference Coating and Its Effects on Anti-interference[J].Surface Technology,2018,47(3):135-139
RFID抗干扰镀层制备及其抗干扰性能影响
Preparation of RFID Anti-interference Coating and Its Effects on Anti-interference
投稿时间:2017-11-11  修订日期:2018-03-20
DOI:10.16490/j.cnki.issn.1001-3660.2018.03.022
中文关键词:  RFID  抗干扰  合金  真空镀膜  镀层厚度  读取距离
英文关键词:RIFD  anti-interference  alloy  vacuum coating  coating thickness  reading distance
基金项目:
作者单位
李海宽 四川宜宾普拉斯包装材料有限公司,四川 宜宾,644000 
阳培翔 四川宜宾普拉斯包装材料有限公司,四川 宜宾,644000 
邹耀邦 四川宜宾普拉斯包装材料有限公司,四川 宜宾,644000 
徐刚 四川宜宾普拉斯包装材料有限公司,四川 宜宾,644000 
AuthorInstitution
LI Hai-kuan Sichuan Yibin Plastic Packaging Materials Co. Ltd, Yibin 644000, China 
YANG Pei-xiang Sichuan Yibin Plastic Packaging Materials Co. Ltd, Yibin 644000, China 
ZOU Yao-bang Sichuan Yibin Plastic Packaging Materials Co. Ltd, Yibin 644000, China 
XU Gang Sichuan Yibin Plastic Packaging Materials Co. Ltd, Yibin 644000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 为了将RFID技术应用到仿金属类包装领域,研究一种RFID抗干扰金属镀层制备技术,同时研究抗干扰镀层厚度对RFID标签可识别读取距离的影响。方法 利用铟锡合金(铟锡质量比1:9和2:8)或纯铟(铟含量99.9%以上)等金属特性,采用在塑料表面进行前处理、喷涂UV底漆、真空蒸发镀膜、喷涂UV面漆等加工工艺,得到一种厚度约为200~300 nm的RFID抗干扰金属镀膜层。采用扫描电镜和真空蒸发镀膜原理,分析了RFID抗干扰金属镀层呈岛状模式的生成过程。将RFID标签紧密粘贴在抗干扰金属镀膜层表面,分别采用Voyantic RFID标签测试系统和手持式RFID读写器,测试了RFID标签在不同抗干扰合金镀层表面的可探测识别距离。结果 采用上述方法制成的RFID抗干扰金属镀层,贴上芯片频率为920~925 MHz的RFID标签,利用专用RFID读写器读取,均能够正常识别读取。利用Voyantic RFID标签测试系统得到RFID标签可探测读取距离在 68.0~83.0 cm之间,利用手持式RFID读写器得到RFID标签可探测读取距离在 28.0~33.2 cm之间。同时研究得出,镀膜层厚度对RFID标签可识别读取距离有一定影响,随着镀膜次数的增加,合金金属镀膜层厚度随之增加,而RFID标签可识别读取距离逐渐减小。对于部分合金,当合金金属镀膜层厚度达到一定值时,RFID标签可识别读取距离接近零。结论 有效解决了RFID技术的金属干扰问题,达到了RFID技术在仿金属包装领域能够正常使用的目的。
英文摘要:
      The work aims to apply RFID technology to the field of metal-alike packaging area, study a preparation technology of RFID interference-free metal coating, and investigate effects of thickness of anti-interference coating on identifiable reading distance of RFID tags. By taking advantage of such metal features as indium-tin alloy (indium-tin mass ratio of 1:9 and 2:8) or pure indium (over 99.9% indium content), a nearly 200~300 nm thick RFID anti-interference metal coating was obtained by adopting such processing technologies as pre-treating plastic surfaces, spraying UV undercoats, vacuum vapor coatings, and spraying UV finishing coats. Formation process of RFID anti-interference coating in island mode was analyzed by adopting scanning electron microscope and vacuum vapor coating principle. RFID tag was closely pasted on the surface of anti-interference metal coating, and detectable identification distance of RFID tag on different anti-interference alloy coating surfaces was tested with Voyantic RFID tag test system and handheld RFID reader, respectively. Special RFID reader could identify and read the RFID anti-interference metal coating as-prepared in aforementioned method pasted with RFID tag with chip frequency of 920~925 MHz. Detectable reading distance of the RFID tag as measured with the Voyantic RFID tag test system was 68.0~83.0 cm, and that as measured with the handheld RFID reader was 28.0~33.2 cm. Coating thickness had certain effects on detectable reading distance. As plating times increased, thickness of alloying metal coating increased while the detectable reading distance of RFID tag decreased gradually. For some alloys, the detectable reading distance of RFID tag was nearly zero when the thickness of alloying metal reached certain level. The work effectively solves the problem of RFID technique’s metal interference, which allows RFID technique to function normally in the field of metal-alike packaging.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19935191位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号