韩翔.基于热效应的织构化分形表面的弹流动压性能分析[J].表面技术,2017,46(12):141-146.
HAN Xiang.EHL Analysis of Textured Fractal Surface Based on Thermal Effect[J].Surface Technology,2017,46(12):141-146
基于热效应的织构化分形表面的弹流动压性能分析
EHL Analysis of Textured Fractal Surface Based on Thermal Effect
投稿时间:2017-05-08  修订日期:2017-12-20
DOI:10.16490/j.cnki.issn.1001-3660.2017.12.023
中文关键词:  热效应  织构  分形表面  弹流润滑  润滑特性
英文关键词:thermal effect  texture  fractal surface  elastohydrodynamic lubrication  lubrication property
基金项目:江苏省科技支撑计划(BE20120044);江苏省产学研前瞻性联合研究项目(BY2014029)
作者单位
韩翔 徐州工程学院 江苏省大型工程装备检测与控制重点实验室,江苏 徐州 221018 
AuthorInstitution
HAN Xiang Jiangsu Provincial Key Laboratory of Large Engineering Equipment Detection and Control, Xuzhou Institute of Technology, Xuzhou 221018, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究织构化分形表面的热弹流润滑性能随分形维数及织构参数的变化规律。方法 建立织构化分形表面的热弹流动压模型并无量纲化,然后运用多重网格法编程求解。通过对多种工况下的摩擦面间的最大压力、最小膜厚和摩擦因数进行比较分析,揭示织构参数和分形参数对织构化分形表面动压润滑性能的影响。结果 随着织构深度的增加,最小膜厚减小,最大压力和固体界面温度增大。摩擦因数-织构深度曲线有最小值,但不同分形维数下的摩擦因数-织构深度曲线的最小值发生处的织构深度值相同。织构深度相同时,最大压力和固体界面温度随维数的增大而减小,平均摩擦因数则增大。最小膜厚-织构密度曲线和摩擦因数-织构密度曲线都存在最小值,最大压力-织构密度和固体界面温度-织构密度曲线有最大值。织构密度相同时,最大压力和固体界面温度随分形维数的增大而减小,摩擦因数则随之增大。结论 分形维数越大,摩擦副表面的摩擦因数越大,但摩擦因数-织构深度和摩擦因数-织构密度曲线都有最小值。
英文摘要:
      The work aims to study the variation of thermal elastohydrodynamic lubrication (EHL) property of textured surface with fractal dimension and texture parameters. Based on the thermal effect, the EHL model of the textured surface was established and nondimensionalized and solved in the method of multigrid programming. The effects of texture parameters and fractal parameters on hydrodynamic lubrication property of the textured fractal surface were revealed based upon comparative analysis of the maximum pressure, the minimum film thickness and friction factor between friction surfaces under various working conditions. With the increase of texture depth, the minimum film thickness decreased, the maximum pressure and solid interface temperature increased, and there was the minimum in friction coefficient-texture depth curve. Although fractal dimensions were different, the minimum of the friction factor-texture depth curve appeared in the same texture depth. When texture depth was constant, the maximum pressure and solid interface temperature decreased while the average friction coefficient increased as the dimension increased. There were minimums in the minimum film thickness-texture density curve and friction coefficient-texture density curve. There were maximums in the maximum pressure-texture density and the solid interface temperature-texture density curve. When texture density was the same, the maximum pressure and solid interface temperature decreased while the friction coefficient increased as the fractal dimension increased. The larger the fractal dimension is, the larger the friction coefficient of the friction pair surface is, but there are minimums in both the friction factor-texture depth and friction factor-texture density curve.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19953178位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号