谢玲玲,陈昌棚,李兰,黄贞益.提高挤压筒内壁耐磨性的WC-12Co涂层有限元优化[J].表面技术,2017,46(12):126-132.
XIE Ling-ling,CHEN Chang-peng,LI Lan,HUANG Zhen-yi.Finite Element Optimization of WC-12Co Coatings Aiming to Improve Wear Resistance of the Extrusion Container Inner Wall[J].Surface Technology,2017,46(12):126-132
提高挤压筒内壁耐磨性的WC-12Co涂层有限元优化
Finite Element Optimization of WC-12Co Coatings Aiming to Improve Wear Resistance of the Extrusion Container Inner Wall
投稿时间:2017-07-24  修订日期:2017-12-20
DOI:10.16490/j.cnki.issn.1001-3660.2017.12.021
中文关键词:  WC-12Co涂层  挤压筒  涂层厚度  耐磨性  热应力耦合
英文关键词:WC-12Co coating  extrusion container  coating thickness  wear resistance  thermal-stress coupling
基金项目:安徽省教育厅自然科学研究重点项目(KJ2017A804);中国科学院特种无机涂层重点实验室开放课题基金资助(KLICM-2013-09)
作者单位
谢玲玲 安徽工业大学 冶金工程学院,安徽 马鞍山 243002 
陈昌棚 安徽工业大学 冶金工程学院,安徽 马鞍山 243002 
李兰 安徽工业大学 冶金工程学院,安徽 马鞍山 243002 
黄贞益 安徽工业大学 冶金工程学院,安徽 马鞍山 243002 
AuthorInstitution
XIE Ling-ling Metallurgical Engineering School, Anhui University of Technology, Ma’anshan 243002, China 
CHEN Chang-peng Metallurgical Engineering School, Anhui University of Technology, Ma’anshan 243002, China 
LI Lan Metallurgical Engineering School, Anhui University of Technology, Ma’anshan 243002, China 
HUANG Zhen-yi Metallurgical Engineering School, Anhui University of Technology, Ma’anshan 243002, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 获得WC-12Co涂层厚度的优化方案,以提高挤压筒内壁的耐磨性。方法 基于ANSYS软件,以两层套圆挤压筒为研究对象,进行挤压筒内壁有无WC-12Co涂层及涂层厚度对挤压筒应力分布影响的有限元模拟。结果 施加涂层后,在装配、挤压-装配和热-挤压-装配情况下,涂层的应力分布合理且都小于该温度下涂层的屈服强度;而在热-装配条件下,由于热应力和过盈量引起的预应力相互抵消,使得总体应力较小;同时,等效应力在涂层与挤压筒的结合处发生剧烈变化,而在其他位置的应力相较于不施加涂层时变化较小。在各种工况下,挤压筒内出现的最大等效应力均随着涂层厚度的增加而降低,且热-挤压-装配下涂层厚度对最大应力影响最大。结论 在所选涂层厚度范围内,涂层厚度越大,挤压筒所受的最大应力越小,越有利于挤压筒使用。当涂层厚度为6.4 mm时,各种工况下的最大等效应力最小,此时在热-挤压-装配工况下的最大等效应力为760.61 MPa,已经远低于H13钢的屈服强度,可以满足实际使用要求。
英文摘要:
      The work aims to improve wear resistance of extrusion container inner wall by acquiring optimization scheme of WC-12Co coating thickness. With two layers of multi-shrinking extrusion containers as research objects, finite element modeling was performed to study effects extrusion container inner wall with WC-12co coatings or not and coating thickness on stress distribution of extrusion containers based on ANSYS software. After the coatings were applied, coating stress was distributed reasonably and below yield strength of the coatings at the temperature under the conditions of assembly, extrusion-assembly and heat-extrusion-assembly; overall stress was lower because prestress arising from thermal stress and magnitude of interference cancelled each other out under the condition of heat-assembly; meanwhile, equivalent stress changed significantly at the joint between the coatings and extrusion containers, while stress in other positions changes slightly compared to that when no coating was applied. Under various conditions, the maximum equivalent stress in the containers decreased with the increase of coating thickness, and coating thickness had greatest effect on the maximum stress under the condition of heat-extrusion-assembly. As the coating thickness increases in the selected range of coating thickness, the maximum stress carried by the extrusion containers decreases, which is more conductive to the use of extrusion container. When the coating thickness is 6.4 mm, the maximum equivalent stress under all working conditions is the minimum, and that under the condition of heat-extrusion-assembly is 845.38 MPa, which is far lower than yield strength of H13 steel, hence it meets actual usage requirements.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19514681位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号