单磊,汪陇亮,孙润军,王永欣.恒电位对TiAlN涂层在海水环境中磨蚀性能的影响[J].表面技术,2017,46(11):165-171.
SHAN Lei,WANG Long-liang,SUN Run-jun,WANG Yong-xin.Effects of Constant Potentials on Abrasion Resistance of TiAlN Coating in Seawater[J].Surface Technology,2017,46(11):165-171
恒电位对TiAlN涂层在海水环境中磨蚀性能的影响
Effects of Constant Potentials on Abrasion Resistance of TiAlN Coating in Seawater
投稿时间:2017-08-18  修订日期:2017-11-20
DOI:10.16490/j.cnki.issn.1001-3660.2017.11.023
中文关键词:  TiAlN涂层  摩擦系数  磨损率  电化学  海水  磨蚀
英文关键词:TiAlN coating  friction coefficient  wear rate  electrochemical  seawater  abrasion
基金项目:国家自然科学基金资助项目(51605433);浙江省教育厅科研项目(Y201534852);宁波市自然科学基金(2016A610221);宁波产业技术创新重大专项-科技创新团队(2015B11009);973科技支撑计划(2014CB643302)
作者单位
单磊 1.浙江纺织服装职业技术学院,浙江 宁波 315211;2.西安工程大学 纺织与材料学院,西安 710048;3.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室,浙江 宁波 315201 
汪陇亮 1.浙江纺织服装职业技术学院,浙江 宁波 315211;2.西安工程大学 纺织与材料学院,西安 710048;3.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室,浙江 宁波 315201 
孙润军 西安工程大学 纺织与材料学院,西安 710048 
王永欣 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室,浙江 宁波 315201 
AuthorInstitution
SHAN Lei 1.Department of Mechanical, Zhejiang Textile and Fashion College, Ningbo 315211, China; 2.School of Textile and Materials , Xi'an Polytechnic University, Xi'an 710048, China; 3.Key Laboratory of Marine Materials and Related Technologies of Chinese Academy of Sciences, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
WANG Long-liang 1.Department of Mechanical, Zhejiang Textile and Fashion College, Ningbo 315211, China; 2.School of Textile and Materials , Xi'an Polytechnic University, Xi'an 710048, China; 3.Key Laboratory of Marine Materials and Related Technologies of Chinese Academy of Sciences, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
SUN Run-jun School of Textile and Materials , Xi'an Polytechnic University, Xi'an 710048, China 
WANG Yong-xin Key Laboratory of Marine Materials and Related Technologies of Chinese Academy of Sciences, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究不同恒电位对TiAlN涂层在海水环境中磨蚀性能的影响,分析其腐蚀磨损行为。方法 用PVD多弧离子镀技术在316不锈钢上沉积TiAlN涂层。通过XRD测试、硬度测试、结合力测试、电化学工作站测试、不同恒电位下磨蚀测试及磨痕截面轮廓测试,分别评价TiAlN涂层的相结构、表面硬度、结合力、电化学性能、摩擦系数和磨损率,通过扫描电子显微镜观察涂层磨痕形貌并分析其磨蚀损伤机理。结果 TiAlN涂层在海水环境下的抗腐蚀性优于基体316不锈钢。在阴极电位下,恒电位增加使涂层的摩擦系数逐渐降低。阳极电位为0.5 V时,摩擦形成的TiO2基含水化合物颗粒可作为润滑剂,使涂层的摩擦系数迅速降低至0.45。TiAlN涂层在干摩擦条件下的磨损率为5.5678×10-5 mm3/(N•m),在阴极保护电位为-1 V下的磨损率为2.2909×10-6 mm3/(N•m),在开路电位(OCP)下的磨损率为7.4881×10-5 mm3/(N•m)。结论 随着加载电位(SCE)的升高,涂层的腐蚀效应愈发明显。涂层在阴极电位下的磨蚀机理主要为塑性变形,在阳极电位下的磨蚀机理主要为疲劳点蚀。
英文摘要:
      The work aims to study the effects of different constant potentials on abrasion resistance of TiAlN coating in artificial seawater. TiAlN coating was deposited on 316 stainless steel by adopting multi-arc ion plating technology. Phase structure, surface hardness, adhesion, electrochemical property, friction coefficient and wear rate of the TAliN coating was evaluated by performing XRD test, hardness test, adhesion test, electrochemical workstation test, abrasion test under different constant potentials and grinding crack section profile test, respectively. SEM was used to observe grinding crack morphology of the coating and analyze abrasion damage mechanism. Corrosion resistance of the TiAlN coating was superior to that of the substrate 316 stainless steel in seawater. Under the cathode potential, friction coefficient of the coating decreased as constant potential increased. Under the anode potential of 0.5 V, TiO2-based aquo-compound particles generated by friction could reduce the friction coefficient rapidly to 0.45 as a lubricant. Wear rate of the TiAlN coating under dry friction was 5.5678×10-5 mm3/(N•m). The wear rate was 2.2909×10-6 mm3/(N•m) under -1 V cathode protection potential, and 7.4881×10-5 mm3/(N•m) under open circuit potential (OCP). With the increase of load potential (SCE), the coating had more obvious corrosion effect. Abrasion mechanism of the coating under cathode potential was mainly plastic deformation, and the abrasion mechanism under anode potential was mainly fatigue pitting.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19957307位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号