袁美霞,刘少楠,唐伯雁,高振莉,窦蕴平.微细铣削铝合金6061表面毛刺研究[J].表面技术,2017,46(8):268-273.
YUAN Mei-xia,LIU Shao-nan,TANG Bo-yan,GAO Zhen-li,DOU Yun-ping.Investigation on Burrs on Micro Milled Aluminum Alloy 6061[J].Surface Technology,2017,46(8):268-273
微细铣削铝合金6061表面毛刺研究
Investigation on Burrs on Micro Milled Aluminum Alloy 6061
投稿时间:2017-03-05  修订日期:2017-08-20
DOI:10.16490/j.cnki.issn.1001-3660.2017.08.043
中文关键词:  微毛刺  微铣削  顺铣  逆铣  刀具磨损  切削参数
英文关键词:micro burr  micro milling  down milling  up milling  tool wear  cutting parameters
基金项目:北京市教育委员会科技计划面上项目(KM201510016008);北京市优秀人才培养资助(2014000020124G056);国家自然科学基金项目(51505006)
作者单位
袁美霞 1.北京建筑大学 机电与车辆工程学院,北京 100044;2.城市轨道交通车辆服役性能保障北京市重点实验室,北京 100044;3.北京市建筑安全监测工程技术研究中心,北京 100044 
刘少楠 北京建筑大学 机电与车辆工程学院,北京 100044 
唐伯雁 1.北京建筑大学 机电与车辆工程学院,北京 100044;2.城市轨道交通车辆服役性能保障北京市重点实验室,北京 100044;3.北京市建筑安全监测工程技术研究中心,北京 100044 
高振莉 1.北京建筑大学 机电与车辆工程学院,北京 100044;2.城市轨道交通车辆服役性能保障北京市重点实验室,北京 100044;3.北京市建筑安全监测工程技术研究中心,北京 100044 
窦蕴平 1.北京建筑大学 机电与车辆工程学院,北京 100044;2.城市轨道交通车辆服役性能保障北京市重点实验室,北京 100044;3.北京市建筑安全监测工程技术研究中心,北京 100044 
AuthorInstitution
YUAN Mei-xia 1.School of Mechanical-electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2.Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles, Beijing 100044, China; 3.Beijing Engineering Research Center of Monitoring for Construction Safety, Beijing 100044, China 
LIU Shao-nan School of Mechanical-electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 
TANG Bo-yan 1.School of Mechanical-electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2.Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles, Beijing 100044, China; 3.Beijing Engineering Research Center of Monitoring for Construction Safety, Beijing 100044, China 
GAO Zhen-li 1.School of Mechanical-electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2.Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles, Beijing 100044, China; 3.Beijing Engineering Research Center of Monitoring for Construction Safety, Beijing 100044, China 
DOU Yun-ping 1.School of Mechanical-electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2.Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles, Beijing 100044, China; 3.Beijing Engineering Research Center of Monitoring for Construction Safety, Beijing 100044, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 揭示微细铣削铝合金6061过程中,铣削工艺参数(切削深度ap、每齿进给量fz、切削速度v)、顺逆铣方式、刀具磨损对毛刺大小及形态的影响规律,为控制铝合金6061毛刺,提高表面质量,优化切削工艺提供参考。方法 基于单因素试验方法,采用涂层硬质合金微直径铣刀,对铝合金6061进行了铣削加工试验,分别对切削参数单因素试验的逆铣、顺铣顶端毛刺大小数据以及刀具磨损、毛刺形态信息进行采集和分析。结果 直观绘制了ap、v、fz对逆顺铣两侧顶端毛刺大小的影响规律图。单因素切削速度试验中,顺铣侧毛刺最大为323 μm,逆铣侧最大为268 μm;单因素每齿进给量试验中,顺铣侧毛刺最大为332 μm,逆铣侧最大为331 μm;单因素切深试验中顺铣侧毛刺最大为314 μm,逆铣侧最大为264 μm。结论 逆铣比顺铣的顶端毛刺小,随切削深度增加,毛刺依次呈现长条须状、撕裂状、波浪形锯齿状。刀具磨损是造成切削过程不稳定的重要因素,同时也会造成毛刺形态和大小不稳定。为尽量减少毛刺,应采用锋利刀具和逆铣方式,控制切削深度,选择合适的切削速度和进给量。
英文摘要:
      The work aims to provide reference for controlling burrs on aluminum alloy 6061, improving surface quality and optimizing cutting process by revealing law of influences of milling process parameters (cutting depth ap, feed per tooth fz and cutting speed v), down and up milling methods as well as tool wear on burr size and shape during micro milling of aluminum alloy 6061. Based on single-factor test method, milling processing test was performed to aluminum alloy 6061 with micro-diameter cutter for coated carbide, so as to collect and analyze such information as top burr size data, tool wear and burr shape for the single-factor test. A diagram indicating law of influences of ap, v and fz on the top burr size ob both sides of up/down milling was visually plotted. In the single-factor cutting speed test, the maximum burr size was 323 μm on down milling side and 268 μm on up milling side; in the single-factor feed per tooth test, the maximum burr size was 332 μm on down milling side and 331 μm on up milling side; in the single-factor cutting depth test, the maximum burr size was 314 μm on down milling side and 264 μm on up milling side. Top burr size on up milling side is smaller than that on down milling side. With the increase of cutting depth, burrs appear to be long fibrous, tearing and wavy serrated shape successively. Tool wear is an important factor leading to unstable cutting process. It can also cause unstable burr shape and size. Adopting sharp tools and up milling, controlling cutting depth and selecting proper cutting speed and feed rate contribute to minimization of burrs.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19516322位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号