张净宜,邱长军,贺沅玮,齐林森.不同Ni含量铁基激光熔覆层组织和性能的研究[J].表面技术,2017,46(6):221-225.
ZHANG Jing-yi,QIU Chang-jun,HE Yuan-wei,QI Lin-sen.Microstructure and Properties of Fe-based Laser Cladding with Different Ni Content[J].Surface Technology,2017,46(6):221-225
不同Ni含量铁基激光熔覆层组织和性能的研究
Microstructure and Properties of Fe-based Laser Cladding with Different Ni Content
投稿时间:2017-01-05  修订日期:2017-06-20
DOI:10.16490/j.cnki.issn.1001-3660.2017.06.035
中文关键词:  铁基合金熔覆层  Ni  残余应力  微观组织  高硬度  裂纹
英文关键词:Fe-based alloy cladding layer  Ni  residual stress  microstructure  high hardness  crack
基金项目:国家自然科学基金项目(51474130);湖南省市联合基金重点项目(13JJ8013);湖南省高校重点实验室项目(湘财教指[2014]85号);湖南省重点学科建设项目(湘教发[2011] 76号);湖南省?高校科技创新团队支持计划(湘教通[2012] 318号)
作者单位
张净宜 南华大学 机械工程学院,湖南 衡阳 421001 
邱长军 南华大学 机械工程学院,湖南 衡阳 421001 
贺沅玮 南华大学 机械工程学院,湖南 衡阳 421001 
齐林森 南华大学 机械工程学院,湖南 衡阳 421001 
AuthorInstitution
ZHANG Jing-yi School of Mechanical Engineering, University of South China, Hengyang 421001, China 
QIU Chang-jun School of Mechanical Engineering, University of South China, Hengyang 421001, China 
HE Yuan-wei School of Mechanical Engineering, University of South China, Hengyang 421001, China 
QI Lin-sen School of Mechanical Engineering, University of South China, Hengyang 421001, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究不同Ni含量铁基激光熔覆层的组织和性能。方法 采用CO2激光器制备了不同Ni含量的铁基激光熔覆层,通过奥林巴斯光学显微镜、场发射扫描电镜、X射线衍射仪及洛氏硬度计等设备,对激光熔覆层物相、微观组织及力学性能进行表征。结果 当Ni含量为10%~11%时,熔覆层物相主要由γ-Fe相组成,含有少量α-Fe相,洛氏硬度为35.1HRC,熔覆层残余应力宏观上表现为拉应力。当Ni含量为6%~7%时,熔覆层物相主要由α-Fe相组成,含有少量γ-Fe相,洛氏硬度为47.9HRC,熔覆层残余应力宏观上接近平衡状态。当Ni含量为2%~3%时,熔覆层主要由α-Fe相组成,洛氏硬度为60.3HRC,熔覆层残余应力宏观上表现为压应力。结论 不同Ni含量熔覆层的物相主要由γ-Fe相和α-Fe相组成,随着Ni含量的降低,熔覆层中γ-Fe相对应的衍射峰强度不断减弱,而α-Fe相对应的衍射峰强度逐渐增强,熔覆层晶粒尺寸减小,表面洛氏硬度增加,残余应力逐渐由拉应力转变为压应力,能够有效抑制裂纹的生成,从而获得高硬度不开裂熔覆层。
英文摘要:
      The work aims to study microstructure and properties of Fe-based laser cladding with different Ni content. Fe-based laser cladding with different Ni content was prepared with CO2 laser. Phase, microstructure and mechanical properties of the laser cladding layer were characterized with Olympus optical microscope, field emission scanning electron microscope, X-ray diffractometer and Rockwell apparatus. When the Ni content was 10%~11%, phase of cladding layer was mainly composed of α-Fe phase, and also contained a little γ-Fe phase, Rockwell hardness was 35.1HRC, and residual stress of cladding layer was macroscopically presented as tensile stress. When the Ni content was 6%~7%, the cladding layer was mainly composed of α-Fe phase, and also contained a little γ-Fe phase, Rockwell hardness was 47.9HRC, and residual stress of cladding layer was macroscopically close to equilibrium state. When the Ni content was between 2% and 3%, the cladding layer was mainly composed of α-Fe phase, the Rockwell hardness was 60.3HRC, and the residual stress of the cladding layer was macroscopically presented as compressive stress. The cladding layer with different content of Ni is mainly composed of α-Fe phase and γ-Fe phase. With the decrease of Ni content, the diffraction peak intensity corresponding to γ-Fe phase in the cladding layer weakens continuously, the diffraction peak intensity corresponding to α-Fe in the cladding layer increases gradually, grain size decreases, Rockwell hardness increases, residual stress force gradually transforms from tensile stress into compressive stress, effectively inhibiting the generation of cracks, thereby high hardness non-cracking cladding layer can be obtained.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19967276位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号