王洪涛,姚海龙,纪岗昌.球磨纳米结构Fe40Al合金粉末及其冷喷涂沉积行为研究[J].表面技术,2017,46(5):66-74.
WANG Hong-tao,YAO Hai-long,JI Gang-chang.Ball-milled Nanostructured Fe40Al Alloy Powder and Its Deposition Behavior in Cold Spray Process[J].Surface Technology,2017,46(5):66-74
球磨纳米结构Fe40Al合金粉末及其冷喷涂沉积行为研究
Ball-milled Nanostructured Fe40Al Alloy Powder and Its Deposition Behavior in Cold Spray Process
投稿时间:2016-12-09  修订日期:2017-05-20
DOI:10.16490/j.cnki.issn.1001-3660.2017.05.012
中文关键词:  球磨  纳米结构  Fe40Al合金粉末  冷喷涂  基体硬度  沉积行为
英文关键词:ball milling  nanostructure  Fe40Al alloy powder  cold spraying  substrate hardness  deposition behavior
基金项目:国家自然科学基金项目(51001056,51561013);江西省自然科学基金项目(20151BAB206008);江西省科技落地计划项目(KJLD12096)
作者单位
王洪涛 1.九江学院,九江 332005;2.西安交通大学,西安 710049 
姚海龙 九江学院,九江 332005 
纪岗昌 九江学院,九江 332005 
AuthorInstitution
WANG Hong-tao 1.Jiujiang University, Jiujiang 332005, China; 2.Xi'an Jiaotong University, Xi'an 710049, China 
YAO Hai-long Jiujiang University, Jiujiang 332005, China 
JI Gang-chang Jiujiang University, Jiujiang 332005, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究冷喷涂用纳米结构Fe40Al合金粉末的球磨制备工艺及其在不同基体表面的冷喷涂沉积行为。方法 以Fe粉、Al粉为原料,按照Fe-40Al进行配比混合,采用行星式球磨机制备纳米结构Fe40Al合金粉末,在不同硬度基体表面(不锈钢、低碳钢、纯铜及锡)冷喷涂沉积单个Fe40Al合金粉末颗粒。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM),分析球磨过程中Fe40Al合金粉末的组织结构演变规律、粉末颗粒在不同基体表面的碰撞变形行为及沉积特性。结果 球磨过程中,随着球磨时间的延长,Al扩散进入Fe晶格形成纳米结构Fe(Al)固溶体,球磨36 h后,Fe40Al合金粉末的晶粒尺寸约为35 nm,平均颗粒尺寸约为20 μm,内部为精细层状结构。纳米结构Fe40Al合金粉末在硬度较高的不锈钢和低碳钢基体上沉积时,粉末颗粒发生强塑性变形而基体变形量较小,颗粒和基体间的结合较弱,沉积效果较差;当在硬度较低、塑性较好的Cu基体上沉积时,基体与粉末颗粒同时发生塑性变形,颗粒和基体间的结合较强,沉积效果最好;在硬度最低的Sn基体上沉积时,基体发生强烈的塑性变形且出现部分熔化,但颗粒几乎没有变形,且颗粒与基体间的结合很弱,沉积效果最差。结论 采用球磨工艺可制备出适合冷喷涂用的纳米结构Fe40Al合金粉末,随着球磨时间的延长,粉末晶粒尺寸减小,硬度增加。基体种类对纳米结构Fe40Al合金粉末的冷喷涂沉积行为影响显著,基体硬度过高或过低均不利于粉末颗粒沉积,基体与粉末颗粒同时发生塑性变形有利于增强颗粒与基体间的界面结合,从而改善沉积效果。
英文摘要:
      The work aims to study ball-milling preparation technology of nanostructured Fe40Al alloy powder for cold spraying use and its cold spraying deposition behavior on different substrates. Fe and Al powder was mixed according to Fe-40Al (at.%) and milled in a planetary ball mill to prepare nanostructured Fe40Al alloy powder. Single Fe40Al alloy powder particle was deposited on the surfaces of four substrates of different harness (stainless steel, low carbon steel, pure copper and Tin) by cold spraying. Structural evolution of the Fe40Al alloy powder during ball milling, and its collision deformation behavior and deposition characters on different substrates were analyzed with X-ray diffractometer (XRD) and scanning electron microscope (SEM). Al atom diffused into Fe lattice and finally formed nanostructured Fe(Al) solid solution as the ball milling time extended. After 36 hours of milling, grain size and average particle size of the Fe40Al alloy powder were approximately 35 nm and 20 μm, respectively, and the powder exhibited refined platelike microstructure. When depositing on stainless steel and low carbon steel substrates of relatively high hardness, nanostructured the Fe40Al alloy powder was subject to intensive plastic deformation while the substrate was subject to little deformation. The deposition effect was not good due to relatively poor bonding condition between the particle and substrate. When depositing on Cu substrate of relatively lower microhardness and good plasticity, both the Fe40Al alloy powder and substrate were subject to intensive plastic deformation and deposition effect was the best due to favorable bonding condition between the particle and substrate. When depositing on Sn substrate of the lowest microhardness, the substrate was subject to intensive plastic deformation and even partial melting in local impacting area, deposition effect was the poorest due to weak bond condition between the intact particle and substrate. Nanostructured Fe40Al alloy powder as feedstock of cold spraying process can be fabricated by ball milled process. The grain size of Fe40Al alloy powder decreases while microhardness increases as the ball milling extends. Substrate type has significant effect on the deposition behavior of Fe40Al alloy powder during cold spraying. The Fe40Al alloy powder exhibits relatively poor deposition effect when substrate microhardness is too high or too low. The optimal deposition effect can be obtained since intensive plastic deformation of both the substrate and powder particle contributes to interface bonding between the particle and substrate.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19953752位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号