吴护林,朱敏,曾德长,邓爱明.疏导式热控结构温度分布研究[J].表面技术,2016,45(7):167-172.
WU Hu-lin,ZHU Min,ZENG De-chang,DENG Ai-ming.Temperature Distribution of Leading Thermal Control Structure[J].Surface Technology,2016,45(7):167-172
疏导式热控结构温度分布研究
Temperature Distribution of Leading Thermal Control Structure
投稿时间:2016-03-30  修订日期:2016-07-20
DOI:10.16490/j.cnki.issn.1001-3660.2016.07.028
中文关键词:  疏导式热控结构  有限元分析  隔热材料  温度分布
英文关键词:leading thermal control structure  finite element analysis  thermal insulation materials  temperature distribution
基金项目:
作者单位
吴护林 1.华南理工大学 材料科学与工程学院,广州 510640; 2.西南技术工程研究所,重庆 400039 
朱敏 华南理工大学 材料科学与工程学院,广州 510640 
曾德长 华南理工大学 材料科学与工程学院,广州 510640 
邓爱明 西南技术工程研究所,重庆 400039 
AuthorInstitution
WU Hu-lin 1.School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;2.Southwest Technology and Engineering Research Institute, Chongqing 400039, China 
ZHU Min School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China 
ZENG De-chang School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China 
DENG Ai-ming Southwest Technology and Engineering Research Institute, Chongqing 400039, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 设计一种以降低表面热辐射为主的疏导式热控结构,通过对疏导式热控结构的热性能进行仿真计算与试验,探讨其温度场分布影响因素。 方法 采用 FLUENT 软件, 仿真分析了该热控结构在热源 200 ℃时,隔热材料和通风条件对流场及温度场的影响。采用 5 mm 厚、导热系数为 0.036 W/(m· K)的隔热材料和 1 mm 厚的纯铝板,制备了总厚度为 100 mm 的疏导式热控结构,测试在热源 200、 300、400 ℃时,距隔热层表面 0、 5、 15、 35、 55、 75、 95 mm 平面内和热控结构外表面的温度,并与仿真计算结果进行了对比。 结果 在不通风条件下,热源为 200、 300、 400 ℃时,热控结构外表面的温度分别为 48.1、 66.8、 87.9 ℃;在 5 m/s 通风条件下,热源为 200、 300、 400 ℃时,热控结构外表面的温度分别为 36.5、 39.8、 47.4 ℃。 结论 仿真计算获得的温度值与实测值一致,疏导空间内部受热量辐射的影响随高度的增大逐渐减小,适当采用气体对流机制能够显著降低疏导空间和热控结构外表面的温度。
英文摘要:
      Objective To design a leading thermal control structure dedicated primarily to decreasing surface thermal radiation. Methods The effect of thermal insulation materials and ventilation on its flow field and temperature field was investigated by using FLUENT software when the temperature of heat source was 200 ℃. The 100 mm thick leading thermal control structure was prepared by combining 5 mm thick thermal insulation materials with the thermal conductivity of 0.036 W/(m·K) and 1mm thick pure aluminium plates. The temperature of thermal control structure on its outside surface and different altitude planes with distances of 0 mm, 5 mm, 15 mm, 35 mm, 55 mm,75 mm and 95 mm from that was measured when the temperature of heat source was 200 ℃, 300 ℃ and 400 ℃ respectively. Then the test results were compared with those of simulation. Results Under the condition of without ventilation, the temperature on the outside surface of thermal control structure was 48.1 ℃, 66.8 ℃ and 87.9 ℃ when the temperature of heat source was 200 ℃, 300 ℃ and 400 ℃ respectively. With a wind speed of 5 m/s, the temperature on the outside surface of thermal control structure was 36.5 ℃, 39.8 ℃and 47.4 ℃ when the temperature of heat source was 200 ℃, 300 ℃ and 400 ℃ respectively. Conclusion It is indicated that the results of simulation are basically consistent with the measured values. The influence of thermal radiation on the leading space inside the thermal control structure can decrease when height increases. With proper ventilation, the temperature on the outside surface of thermal control structure and in the leading space can be significantly reduced.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第22664067位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号