卢洁琴,张晓莉,卫国英,余云丹.化学镀 Ni-W-P 薄膜的制备及其耐蚀性能的研究[J].表面技术,2016,45(4):83-88,104.
LU Jie-qin,ZHANG Xiao-li,WEI Guo-ying,YU Yun-dan.Preparation and Corrosion Resistance of Electroless Plating Ni-W-P Alloy[J].Surface Technology,2016,45(4):83-88,104
化学镀 Ni-W-P 薄膜的制备及其耐蚀性能的研究
Preparation and Corrosion Resistance of Electroless Plating Ni-W-P Alloy
投稿时间:2015-11-13  修订日期:2016-04-20
DOI:10.16490/j.cnki.issn.1001-3660.2016.04.014
中文关键词:  铜锌合金基底  化学镀  Ni-W-P 合金  表面形貌  耐蚀性  极化曲线
英文关键词:copper-zinc alloy substrates  electroless  Ni-W-P alloy  surface morphology  anti-corrosion  polarization curve
基金项目:国家自然科学基金(51471156);国际科技合作项目(2011DFA52400)
作者单位
卢洁琴 中国计量学院 材料科学与工程学院, 杭州 310018 
张晓莉 中国计量学院 材料科学与工程学院, 杭州 310018 
卫国英 中国计量学院 材料科学与工程学院, 杭州 310018 
余云丹 中国计量学院 材料科学与工程学院, 杭州 310018 
AuthorInstitution
LU Jie-qin College of Material Science & Engineering,China Jiliang University, Hangzhou 310018, China 
ZHANG Xiao-li College of Material Science & Engineering,China Jiliang University, Hangzhou 310018, China 
WEI Guo-ying College of Material Science & Engineering,China Jiliang University, Hangzhou 310018, China 
YU Yun-dan College of Material Science & Engineering,China Jiliang University, Hangzhou 310018, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 制备 Ni-W-P 合金薄膜并研究其耐蚀性。 方法 在碱性镀液(pH = 11)中,以次亚磷酸钠为还原剂,柠檬酸钠为络合剂,以铜锌合金为基材,采用化学镀制备 Ni-W-P 薄膜。 通过 X 射线荧光仪、SEM、电化学极化曲线等方法,研究还原剂次亚磷酸钠浓度、络合剂柠檬酸钠浓度以及反应时间对薄膜厚度、表面形貌和耐蚀性的影响。 结果 固定其他参数不变的条件下,在还原剂浓度为 0. 2 mol/ L 及络合剂浓度为 0. 26 mol/ L 时薄膜厚度最大,分别为 0. 2975、0. 1978 μm。 随着次亚磷酸钠浓度的增大,Ni-W-P薄膜表面致密度增加,孔隙率减少。 当次亚磷酸钠的浓度为 0. 1 mol/ L 时,薄膜表面的颗粒较细小,孔隙较多;当次亚磷酸钠的浓度为 0. 4 mol/ L 时,薄膜表面的孔隙明显减少,表面更加均匀且致密度变好;络合剂和还原剂的改变对薄膜腐蚀电位没有明显影响,腐蚀电流密度在还原剂浓度为 0. 4 mol/ L、络合剂浓度为 0. 28 mol/ L 时达到最小,分别为 2. 38×10-6、2. 23×10-6 A/ cm2;随着络合剂和还原剂浓度的增大,薄膜表面趋于致密;随着反应时间的增加,膜层厚度明显增大,腐蚀电流密度随着时间的增加而减小,化学镀 4 h 薄膜腐蚀电流密度最小,为1. 679 ×10-6 A/ cm2。 Ni-W-P 薄膜厚度可达到4. 14 μm。 结论 还原剂浓度为 0. 4 mol/ L,络合剂浓度为 0. 28 mol/ L 时,薄膜的耐蚀性最好,反应时间的延长有利于薄膜耐蚀性能的优化。
英文摘要:
      Objective Ni-W-P coatings were prepared on copper-zinc alloy substrates by electroless deposition to study the anticorrosion performance. Methods Ni-W-P coatings were prepared by electroless deposition using hypophosphite as reducing agent and sodium citrate as complexing agent in the alkaline solution (pH = 11). The investigation was focused on the effects of chemical agents and reaction time on the performance of Ni-W-P coatings. The thickness, surface morphology and corrosion behavior of the coatings were analyzed by X-ray fluorescence analyzer, scanning electron microscopy (SEM) and electrochemical workstation, respectively. Results With the increasing concentrations of reducing agent (0. 1 ~ 0. 4 mol / L) and complexing agent (0. 18 ~ 0. 28 mol / L), the thickness of the coatings reached the maximum. Especially, Ni-W-P coatings with thickness of 0. 2975 μm and 0. 1978 μm could be obtained respectively in the conditions of 0. 2 mol / L reducing agent and 0. 26 mol / L complexing agent. With the increasing concentration of reducing agent, the surface density increased while the porosity decreased. When the concentration of hypophosphite was 0. 1 mol / L, coatings with smaller particles and porous surface could be obtained. However, dense and uniform coatings could be detected at the condition of 0. 4 mol / L hypophosphite. Corrosion current density reached the minimum when the reducing agent concentration was 0. 4 mol / L, and the complexing agent concentration was 0. 28 mol / L, which corresponded to 2. 38×10 -6 A / cm2 and 2. 23×10 -6 A / cm2 , respectively. With the increasing concentrations of reducing agent and complexing agent, more compact coatings could be prepared. Moreover, along with the increasing reaction time, coating thickness changed significantly and the corrosion current density decreased. The corrosion current density reached the minimum and Ni-W-P with a thickness of 4. 14 μm could be prepared when the reaction time was 4 hours. Conclusion The coatings with the best corrosion resistance were obtained with 0. 4 mol / L of reducing agent and 0. 28 mol / L of complexing agent. In addition, longer reaction time helped to optimize the corrosion resistance of the coatings.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20116413位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号