廉兵杰,石泽民,徐慧,赵起锋,王木立,姜云瑛,胡松青.唑类缓蚀剂在铜表面的吸附机理[J].表面技术,2015,44(12):19-26.
LIAN Bing-jie,SHI Ze-min,XU Hui,ZHAO Qi-feng,WANG Mu-li,JIANG Yun-ying,HU Song-qing.Adsorption Mechanism of Azole Corrosion Inhibitors on Cu Surface[J].Surface Technology,2015,44(12):19-26
唑类缓蚀剂在铜表面的吸附机理
Adsorption Mechanism of Azole Corrosion Inhibitors on Cu Surface
投稿时间:2015-11-04  修订日期:2015-12-20
DOI:10.16490/j.cnki.issn.1001-3660.2015.12.004
中文关键词:  唑类有机物  缓蚀剂  吸附机理  动电位极化曲线  密度泛函理论  分波态密度
英文关键词:azole organic compounds  corrosion inhibitor  adsorption mechanism  potentiodynamic polarization curve  density functional theory  projected density of states
基金项目:山东省自然科学基金(ZR2012BM010,ZR2014EL003);中央高校基本科研业务费专项资金(15CX02066A)
作者单位
廉兵杰 中海油常州涂料化工研究院有限公司, 江苏 常州 213000 
石泽民 中国石油大学(华东) 理学院, 山东 青岛 266580 
徐慧 中海油常州涂料化工研究院有限公司, 江苏 常州 213000 
赵起锋 中海油常州涂料化工研究院有限公司, 江苏 常州 213000 
王木立 中海油常州涂料化工研究院有限公司, 江苏 常州 213000 
姜云瑛 中国石油大学(华东) 理学院, 山东 青岛 266580 
胡松青 中国石油大学(华东) 理学院, 山东 青岛 266580 
AuthorInstitution
LIAN Bing-jie CNOOC Changzhou Paint & Coatings Industry Research Institute Co. , Ltd, Changzhou 213000, China 
SHI Ze-min College of Science, China University of Petroleum, Qingdao 266580, China 
XU Hui CNOOC Changzhou Paint & Coatings Industry Research Institute Co. , Ltd, Changzhou 213000, China 
ZHAO Qi-feng CNOOC Changzhou Paint & Coatings Industry Research Institute Co. , Ltd, Changzhou 213000, China 
WANG Mu-li CNOOC Changzhou Paint & Coatings Industry Research Institute Co. , Ltd, Changzhou 213000, China 
JIANG Yun-ying College of Science, China University of Petroleum, Qingdao 266580, China 
HU Song-qing College of Science, China University of Petroleum, Qingdao 266580, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 对比三氮唑(TA)和苯并三氮唑(BTA)两种缓蚀剂的缓蚀性能,明确两种缓蚀剂在铜表面的吸附类型,并从实验和分子模拟角度解释其吸附机理。 方法 采用动电位极化曲线法测试两种缓蚀剂的缓蚀效率,采用吸附等温拟合方法确定两种缓蚀剂的吸附类型,采用分子模拟中的量子化学计算方法计算两种缓蚀剂在铜表面的吸附能、形变电荷密度和分波态密度等参数,深入揭示其吸附机理。 结果在不同浓度下,BTA 的缓蚀效率均大于 TA。 两种缓蚀剂浓度与覆盖度的关系符合 Langmuir 吸附模型,其吸附自由能介于-35 ~ -37 kJ/ mol 之间。 BTA 在铜表面的吸附能绝对值(顶位为 4. 41 eV,桥位为 4. 36eV)要大于 TA 的吸附能绝对值(3. 28 eV),吸附过程发生了明显的电荷转移,电子云处于两个成键原子之间,且 N 原子 s,p 轨道与 Cu 原子 d 轨道发生重叠。 中性和质子化形式的两种缓蚀剂分子均可在铜表面发生平行吸附。 结论 由于 BTA 在铜表面的吸附能力强于 TA,因此 BTA 的缓蚀性能优于 TA。 两种缓蚀剂在铜表面既能发生化学吸附,又能发生物理吸附。 化学吸附是由于 N 原子的 s,p 轨道与 Cu 原子d 轨道相互作用所致,物理吸附是由于中性分子的范德华相互作用和质子化分子的静电相互作用所致。
英文摘要:
      Objective To compare the inhibition performance of two corrosion inhibitors: 1, 2, 4-triazole and benzotriazole, in order to explore their adsorption types on Cu surface and explain the inhibition mechanism from experiment and molecular simulation point of view. Methods Potentiodynamic polarization measurement was used to test the corrosion inhibitive efficiency of the two inhibitors. The adsorption isothermal fitting method was used to explore their adsorption types on Cu surface. Adsorption energy, deformation charge density and partial density of states were calculated using quantum chemistry calculation method to explain their inhibition mechanism. Results The results of polarization measurement showed that the inhibition efficiency of benzotriazole was higher than that of triazole at all concentrations. The relationship of concentration and coverage of the two inhibitors accorded with the Langmuir adsorption isotherm, and their adsorption free energy was in range of -35 ~ -37 kJ / mol. The absolute value of adsorption energy of benzotriazole (top -4. 41eV, bridge -4. 36 eV) was larger than that of triazole (3. 28 eV). Obvious charge transfer occurred in the adsorption process, and the electron atmosphere distributed between the two bonding atoms. In addition, the s,p orbits of N atoms and the d orbit of Cu atoms overlapped during the adsorption process. Both of the neutral and protonated forms of the two inhibitors could parallelly adsorb onto Cu surface. Conclusion The inhibition performance of benzotriazole was better than that of triazole, which was due to the higher adsorptivity of benzotriazole compared to that of triazole. Both chemical adsorption and physical adsorption existed in the interaction of the inhibitors and the Cu surface, and the chemical adsorption of inhibitors on Cu surface was attributed to the covalent bond between N and Cu atoms, and the bonding interaction was due to atomic orbits hybridization, while the physical adsorption between the inhibitor and Cu surface consisted of both Van der Waals forces and electrostatic attraction.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20051505位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号