常季,陈吉,崔霄,孙彦伟.脉冲电沉积 WC-Co-Ni 镀层的制备及性能研究[J].表面技术,2015,44(11):35-39,51.
CHANG Ji,CHEN Ji,CUI Xiao,SUN Yan-wei.Pulse Electrodeposition for WC-Co-Ni Coating Preparation and Performance[J].Surface Technology,2015,44(11):35-39,51
脉冲电沉积 WC-Co-Ni 镀层的制备及性能研究
Pulse Electrodeposition for WC-Co-Ni Coating Preparation and Performance
投稿时间:2015-09-06  修订日期:2015-11-20
DOI:10.16490/j.cnki.issn.1001-3660.2015.11.006
中文关键词:  脉冲电沉积  WC-Co-Ni 镀层  形核  显微硬度  脉冲参数  腐蚀速率
英文关键词:pulse electrodeposition  WC-Co-Ni coating  nucleation  microhardness  pulse parameters  corrosion rate
基金项目:辽宁省自然科学基金 (201202127)
作者单位
常季 辽宁石油化工大学 机械工程学院, 辽宁 抚顺 113001 
陈吉 辽宁石油化工大学 机械工程学院, 辽宁 抚顺 113001 
崔霄 辽宁石油化工大学 机械工程学院, 辽宁 抚顺 113001 
孙彦伟 中国石油大庆炼化公司炼油二厂, 黑龙江 大庆 163411 
AuthorInstitution
CHANG Ji Department of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China 
CHEN Ji Department of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China 
CUI Xiao Department of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China 
SUN Yan-wei Secondary Oil-refining Factory of Petro China, Daqing Refining and Chemical Company, Daqing 163411, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高 WC-Co-Ni 纳米晶复合镀层的综合性能。 方法 利用脉冲电沉积法制备 WC-Co-Ni纳米晶复合镀层,分析镀层的结构、表面形貌及元素成分,测试镀层的显微硬度。 对 WC-Co-Ni 纳米晶复合镀层和 304 不锈钢进行 5% (质量分数)H2SO4 溶液浸泡实验,计算腐蚀速率,对比其耐蚀性。 结果 当脉冲参数为阴极电流密度 5 A/ dm2、脉冲占空比 50% 、脉冲频率 2000 Hz 时,施镀 2 h 制备的 WC-Co-Ni 复合镀层为纳米晶结构。 镀层表面平整、光亮,无裂纹,由立方晶型的 Ni、六方结构的 WC 和立方晶型的 Co 组成,WC-Co 颗粒均匀弥散在纳米晶 Ni 镀层内,且 m(Ni) : m(W) : m(C) : m(Co)= 6 : 2 : 1 : 1。 WC-Co纳米颗粒起到了促进形核的作用,晶粒尺寸大多分布在 20 nm 左右。 WC-Co 纳米颗粒对镀层起到了弥散强化作用,使复合镀层的显微硬度达到 600HV。 在浸泡腐蚀实验中,随着温度从 20 ℃升高至 80 ℃ ,复合镀层的腐蚀速率增加缓慢,20 ℃下的腐蚀速率仅为 0. 4192 mm/ a,80 ℃ 下的腐蚀速率也低于 20 mm/ a。结论 脉冲电沉积法制备的 WC-Co-Ni 纳米晶复合镀层硬度高于传统的不锈钢材料,耐蚀性也优于 304不锈钢,综合性能较好。
英文摘要:
      Objective To improve the comprehensive performance of WC-Co-Ni nanocrystalline composite coatings. Methods WC-Co-Ni nanocrystalline composite coatings were prepared by pulse electrodeposition, the structure, the surface morphology and the elemental composition were analyzed, microhardness of the composite coatings was tested. The 304 stainless steel and the composite coatings were immersed in H2 SO4 solution of the mass fraction of 5% , the corrosion rate was calculated and their corrosion resistances were compared. Results It was showed that when the pulse parameters were the follows, i. e. , 5 A / dm2 cathodic current density, pulse duty ratio 50% , the pulse frequency of 2000 Hz and the plating time 2 hours, the prepared WC-Co-Ni composite coating formed a nanocrystalline structure. At these parameters, the coating, composed by cubic crystal Ni, hexagonal WC and cubic crystal Co, was smooth and bright without cracks. The WC-Co particles uniformly diffused in the Ni nanocrystalline coating layer and m(Ni) : m(W) : m(C) : m(Co)= 6 : 2 : 1 : 1. WC-Co nanoparticles played an important role to promote nucleation and the grain size was mostly about 20 nm. WC-Co nanoparticles had a strengthening effect on the coating dispersion, making the microhardness of the composite coating reach to 600HV. The immersion test showed that the corrosion rate of the composite coating increased slowly when the temperature raised from 20 ℃ to 80 ℃ , and the corrosion rate was only 0. 4192 mm / a at 20 ℃ and less than 20 mm / a at 80 ℃ . Conclusion The hardness, corrosion resistance and comprehensive performance of the WC-Co-Ni nano-crystalline composite coatings are superior to the traditional 304 stainless steel.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20032108位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号