李洪,张津,彭力,何业东.TC4 合金表面微弧氧化制备抗高温氧化涂层[J].表面技术,2015,44(10):52-57,98.
LI Hong,ZHANG Jin,PENG Li,HE Ye-dong.Preparation of Coating with Oxidation Resistance at High Temperature on Ti6Al4V Alloy Surface by Micro-arc Oxidation Technique[J].Surface Technology,2015,44(10):52-57,98
TC4 合金表面微弧氧化制备抗高温氧化涂层
Preparation of Coating with Oxidation Resistance at High Temperature on Ti6Al4V Alloy Surface by Micro-arc Oxidation Technique
投稿时间:2015-07-06  修订日期:2015-10-20
DOI:10.16490/j.cnki.issn.1001-3660.2015.10.009
中文关键词:  TC4 钛合金  微弧氧化  正交试验  抗氧化  回归分析  数学模型
英文关键词:Ti6Al4V alloy  micro-arc oxidation  orthogonal test  anti-oxidation  regression analysis  mathematical model
基金项目:国家自然科学基金(51271030)
作者单位
李洪 1. 北京科技大学 新材料技术研究院, 北京 100083;2. 北京科技大学 北京市腐蚀、磨蚀与表面技术重点试验室, 北京 100083 
张津 1. 北京科技大学 新材料技术研究院, 北京 100083;2. 北京科技大学 北京市腐蚀、磨蚀与表面技术重点试验室, 北京 100083 
彭力 1. 北京科技大学 新材料技术研究院, 北京 100083;2. 北京科技大学 北京市腐蚀、磨蚀与表面技术重点试验室, 北京 100083 
何业东 1. 北京科技大学 新材料技术研究院, 北京 100083;2. 北京科技大学 北京市腐蚀、磨蚀与表面技术重点试验室, 北京 100083 
AuthorInstitution
LI Hong 1. Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China; 2. Beijing Key Lab. for Corrosion, Erosion and Surface Technology, University of Science and Technology Beijing, Beijing 100083, China 
ZHANG Jin 1. Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China; 2. Beijing Key Lab. for Corrosion, Erosion and Surface Technology, University of Science and Technology Beijing, Beijing 100083, China 
PENG Li 1. Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China; 2. Beijing Key Lab. for Corrosion, Erosion and Surface Technology, University of Science and Technology Beijing, Beijing 100083, China 
HE Ye-dong 1. Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China; 2. Beijing Key Lab. for Corrosion, Erosion and Surface Technology, University of Science and Technology Beijing, Beijing 100083, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 寻求最佳的微弧氧化工艺参数,提高钛合金的高温抗氧化性能。 方法 进行 3 因素 3 水平正交试验(3 因素包括电压、氧化反应时间和电解液浓度),通过 XRD 和 SEM 表征微弧氧化涂层的物相和显微结构,采用 650 ℃ ×100 h 循环氧化试验评价涂层的抗高温氧化性能,最终利用极差分析法分析各因素对涂层试样氧化增重的影响主次,并得到最优参数组合。 利用回归分析建立氧化增重与试验各参数之间的数学模型,并分析模型的显著性。 结果 不同工艺参数下制得的微弧氧化涂层表面形貌特征不同,涂层物相以金红石相和锐钛矿相二氧化钛为主。 3 个因素对涂层抗高温氧化性的影响由大到小依次为:电压>时间>电解液浓度。 建立的氧化增重 W 与各参数(电压 V、反应时间 t、电解液浓度 E)间的二次函数方程模型为:W = 0. 008 39(V-396. 6) +0. 1698t-64. 5E-0. 000 108(V-396. 6)2 -0. 0044t2 +700E2 +0. 0017。 结论 最佳参数组合为:电压 480 V,时间 25 min,电解液浓度 0. 04 mol/ L。 通过回归分析得到的氧化增重与各参数间的数学模型显著。
英文摘要:
      Objective To determine the optimal MAO technological parameters and to improve the the anti-oxidation property of Ti alloy at high temperature. Methods The orthogonal table of L9(33 ) was used to design the test. The coating structure and phase were characterized by SEM and XRD, respectively. Thermal cyclic oxidation at 650 ℃ for 100 h was carried out to evaluate the anti-oxidation property of the coating at high temperature. Range analysis was used to sort the MAO technological parameters according to their effects on the oxidation weight gain of the coating sample, obtaining the combination of optimal parameters. Mathematical model was built between the oxidation weight gain and technological parameters by regression analysis, and the significance of the model was analyzed. Results The surface morphology characteristics of MAO coatings prepared with different technological parameters was different, and the major phases of TiO2 in the coating were rutile and anatase phases. The effects of the three factors on the anti-oxidation property of the coating at high temperature were in the order of voltage>time>electrolyte concentration. The quadratic function equation model established between the oxidation weight gain and different parameters (voltage V, reaction time t, electrolyte concentration E) was W = 0. 008 39 (V-396. 6) +0. 1698t -64. 5E -0. 000 108 ( V -396. 6) 2 -0. 0044t2 +700E2 + 0. 0017. Conclusion The optimized combination of technological parameters was: voltage 480 V, reaction time 25 min, electrolyte concentration 0. 04 mol / L. The mathematical model obtained from the oxidation weight gain and different parameters through regression analysis was significant.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20056582位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号