王朋,刘宏,吕媛媛,姜魁经.化学沉积 Ni-Mo-P 和 Ni-P 镀层退火晶化组织及耐蚀性[J].表面技术,2015,44(10):7-15.
WANG Peng,LIU Hong,LYU Yuan-yuan,JIANG Kui-jing.Microstructures and Corrosion Resistance of Annealed Ni-Mo-P and Ni-P Coatings Prepared by Chemical Deposition[J].Surface Technology,2015,44(10):7-15
化学沉积 Ni-Mo-P 和 Ni-P 镀层退火晶化组织及耐蚀性
Microstructures and Corrosion Resistance of Annealed Ni-Mo-P and Ni-P Coatings Prepared by Chemical Deposition
投稿时间:2015-06-08  修订日期:2015-10-20
DOI:10.16490/j.cnki.issn.1001-3660.2015.10.002
中文关键词:  化学沉积  Ni-Mo-P 镀层  Ni-P 镀层  退火  显微组织  耐蚀性
英文关键词:chemical deposition  Ni-Mo-P coating  Ni-P coating  annealing  microstructure  corrosion resistance
基金项目:山东省自然科学基金(ZR2011EMM014)
作者单位
王朋 齐鲁工业大学 机械与汽车工程学院, 济南 250353 
刘宏 齐鲁工业大学 机械与汽车工程学院, 济南 250353 
吕媛媛 齐鲁工业大学 机械与汽车工程学院, 济南 250353 
姜魁经 齐鲁工业大学 机械与汽车工程学院, 济南 250353 
AuthorInstitution
WANG Peng School of Mechanical & Automotive Engineering, Qilu University of Technology, Jinan 250353, China 
LIU Hong School of Mechanical & Automotive Engineering, Qilu University of Technology, Jinan 250353, China 
LYU Yuan-yuan School of Mechanical & Automotive Engineering, Qilu University of Technology, Jinan 250353, China 
JIANG Kui-jing School of Mechanical & Automotive Engineering, Qilu University of Technology, Jinan 250353, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究化学沉积 Ni-4. 11% Mo-6. 50% P 和 Ni-9. 19% P 合金镀层退火晶化转变特征,通过定量表征镀层的晶化程度、晶粒尺寸及结晶相的质量分数,建立显微组织与耐蚀性的关联。 方法 采用XRD 衍射技术和 Jade 软件分析,定量表征镀层的晶化组织特征,由 SEM/ EDS 测试确定镀层的成分及表面形貌,通过浸泡腐蚀实验及金相显微观察,对比两种镀层的耐蚀性。 结果 Ni-Mo-P 镀层在低于 400 ℃退火时,只有 Ni 相结晶;在≥400 ℃ 退火时,发生 Ni3P 晶化反应,同时伴有 Ni-Mo 固溶体的形成,600 ℃时的晶化程度为 88. 13% 。 相比之下,Ni-P 镀层中 Ni3P 相开始析出的温度降至 300 ℃ ,600 ℃ 时的晶化程度达到 91% 。 在相同温度进行热处理时,Ni-Mo-P 镀层晶粒尺寸小于 Ni-P 镀层。 在发生 Ni3P 晶化反应的温度下,两种镀层中 Ni3P 的晶粒尺寸总是大于 Ni 相。 在 0. 5 mol/ L 的 H2SO4 中,对于 Ni-Mo-P 镀层,除 300 ℃外,其他温度下的热处理均能显著改善其耐蚀性;而对于 Ni-P 镀层,镀态下具有最好的耐蚀性能。 在 10% 的 HCl 溶液中,退火温度为 600 ℃ 时,Ni-Mo-P 镀层的耐点蚀性能更好;而 Ni-P 合金则相反,镀态及低温 200 ℃退火后的耐点蚀性能最好。 结论 Mo 的共沉积提高了 Ni-Mo-P 镀层 Ni3P 的析出温度,降低了镀层的晶化程度及晶粒尺寸;与 Ni-P 镀层相比,高温退火的 Ni-Mo-P 镀层表现出了优异的耐点蚀性能,但耐硫酸均匀腐蚀的性能较差。
英文摘要:
      Objective To study the crystallizing characteristics of Ni-4. 11% Mo-6. 50% P and Ni-9. 19% P coatings prepared by chemical deposition during annealing, and to establish the relationship between the microstructure and corrosion resistance by quantitative characterization of crystallization degree, grain size and mass fraction of crystalline phases of the coatings. Methods The structural characteristics of coatings were quantitatively analyzed using XRD diffraction technique and Jade software; the morphology and composition of coatings were determined by SEM / EDS measurements; the corrosion resistance of both coatings was compared by immersion corrosion tests and metallographic microstructural observation. Results When the annealing temperature was below 400 ℃ , only crystallized Ni phase existed in the Ni-Mo-P coating. The crystallization reaction of the Ni3 P phase occurred at 400 ℃ or above, and was accompanied by the formation of Ni-Mo solid solution. When the annealing temperature reached 600 ℃ , the degree of crystallization of the Ni-Mo-P coating was 88. 13% . In contrast, when the precipitation temperature of Ni3 P phase in the Ni-P coating was lowered to 300 ℃ , the degree of crystallization reached 91% at 600 ℃ . The grain sizes of the Ni-Mo-P coating were smaller than those of the Ni-P coating at the same annealing temperature. The grain size of Ni3 P phase was always larger than that of Ni phase at the crystallization reaction temperature of Ni3 P phase. In the 0. 5 mol / L H2 SO4 solution, for the Ni-Mo-P alloy, the heat treatment could significantly improve its corrosion resistance except at the annealing temperature of 300 ℃ . For Ni-P alloy, the as-plated coating had the best corrosion resistance. In the 10% HCl solution, the Ni-Mo-P alloy annealed at the high temperature of 600 ℃ had higher resistance to pitting corrosion. For Ni-P alloy, it showed the opposite trend. The as-plated and annealed coatings at low temperature of 200 ℃ showed the best pitting corrosion resistance. Conclusion The co-deposition of Mo into Ni-P coating enhanced the precipitation temperature of Ni3 P phase and decreased the degree of crystallization and grain size. Compared with the Ni-P coating, the Ni-Mo-P coating annealed at high temperature exhibited better pitting resistance, but the resistance to uniform corrosion in H2 SO4 solution was lower.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20117055位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号