Ni-Co-CeO$_2$镀层的制备及耐腐蚀性能研究

金辉1,2, 陈立佳1, 王一雍2, 王璐2

(1. 沈阳工业大学 材料科学与工程学院, 沈阳 110870;
2. 辽宁科技大学 材料与冶金学院, 辽宁 鞍山 114051)

摘要：目的 提高 Ni-Co-CeO$_2$纳米复合镀层的显微硬度及耐腐蚀性能。方法 利用超声技术，采用电沉积方法制备 Ni-Co-CeO$_2$纳米复合镀层。通过正交实验方法，对 Ni$^{2+}$、Co$^{2+}$及纳米颗粒共沉积工艺实验进行研究，以显微硬度作为考察指标，通过极化曲线确定电沉积的最佳工艺条件。利用极化曲线研究纳米复合镀层在 3.5%NaCl 水溶液中的耐腐蚀性能。通过 XRD 分析纳米复合镀层的相组成，采用 SEM、EDAX 研究纳米复合镀层的微观形貌和元素组成。结果 通过超声场的超声空化作用，将纳米钛酸 CeO$_2$弥散分布于镀层中，使镀层晶格细化，镀层硬度由 264.34HV 上升到 486.82HV, 同时镀层的耐蚀性能也有所提高，自腐蚀电流密度由 6.305 μA/cm2减小至 2.012 μA/cm2。结论 由正交实验结果得出，在超声功率为 160 W 的实验条件下，制得镀层的显微工件条件为：镀液温度 55 ℃，电流密度 2 A/dm2，纳米钛酸 CeO$_2$加入量 1 g/L，pH 值 5。最佳工艺条件下制备的镀层表面致密均匀，硬度和耐腐蚀性能均有一定提高。

关键词：Ni-Co-CeO$_2$复合镀层；超声分散；纳米 CeO$_2$；耐蚀性；极化曲线；电化学测试

中图分类号：TQ153 文献标识码：A 文章编号：1001-3660(2017)10-0118-05

DOI: 10.16490/j.cnki.issn.1001-3660.2017.10.016

Preparation and Corrosion Resistance of Ni-Co-CeO$_2$ Composite Coatings

JIN Hui1,2, CHEN Li-jia1, WANG Yi-yong2, WANG Lu2

(1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
2. School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China)

ABSTRACT: The work aims to improve microhardness and corrosion resistance of Ni-Co-CeO$_2$ nanocomposite coatings. The Ni-Co-CeO$_2$ nanocomposite coatings were prepared in the method of electrodeposition under ultrasound condition. Codiposition technology experiment involving Ni$^{2+}$, Co$^{2+}$ and nano particles was studied in the method of orthogonal experiment. With micro Vickers hardness as examining index, optimum technological conditions of electrodeposition were determined based upon range analysis, and corrosion resistance of the Ni-Co-CeO$_2$ nanocomposite coatings in 3.5wt% NaCl solution was studied based upon poentiation polarisation. The surface morphology, microstructure and elementary composition of the nano composite coatings were studied by SEM, XRD and EDAX. Under the effect of ultrasound cavitation, nano rare earth CeO$_2$ was dispersed in the coatings, the nanoco mposite coatings were refined. As a result, microhardness of the coatings increased from 264.34HV to 486.82HV,
corrosion resistance was improved, and the substrate cell value decreased to 2.012 μA/cm² from 6.305 μA/cm². Provided with the experimental condition of 160 W ultrasonic power, the optimum technological conditions of coatings preparation are, aging bath temperature of 55 °C, current density of 2 A/dm², CeO₂ concentration of 1 g/L and pH of 5. The coatings prepared under the optimum technological conditions are uniform and compact, and the microhardness and corrosion resistance are increased significantly.

KEY WORDS: Ni-Co-CeO₂ composite coating; ultrasonic dispersion; nano CeO₂; corrosion resistance; potentiodynamic polarization; electrochemical test

Ni-Co复合镀层由于具有比传统镀层更高的比强度、耐磨性、抗高温氧化性及优异的耐腐蚀性能，而被广泛地应用于石油化工的耐腐蚀件、航空发动机轴颈等的高端材料及冶金工业中的连接器等。稀土元素具有独特的外层电子排布，在国民经济的各个领域都有广泛的应用[1-3]。众所周知，纳米粒子与金属共电沉积可以使复合镀层具有很多优异的性能。

目前，稀土纳米氧化物，如 Y₂O₃、CeO₂、La₂O₃等，由于具有独特的物理化学特性，而被用于复合电沉积过程[4-6]。CeO₂具有很多优异的特性，将其加入金属镀层中，可以使复合镀层具有优异的摩擦性能、硬度、耐磨性、高温抗氧化性等[7-10]。因此，许多学者致力于纳米CeO₂复合镀层的研究，希望能够改善复合镀层的各项性能。例如，Zhang等人[11]通过电沉积不同浓度CeO₂与Ni的复合镀层，以提高800 ℃下的抗氧化性能，对比纯Ni镀层，Ni-CeO₂镀层的高温氧化速率明显减小，这是由于复合层的纳米CeO₂粒子阻碍了Ni沿晶界扩散。Xiong等人[12]研究了Ni-CeO₂镀层的显微硬度和耐磨性，认为CeO₂加入到Ni镀层中，减小了镀层的晶粒。由于弥散强化作用，CeO₂质量分数为10 g/ L时，镀层的机械性能最优。Kasturbai等人[13]在乙酸镀液中制备了CeO₂增强Ni纳米复合镀层，结果表明，Ni-CeO₂纳米复合镀层的显微硬度值高于纯Ni镀层，Ni-CeO₂纳米复合镀层在3.5%NaCl溶液中有更高的耐蚀性能。但由于纳米粒子具有较高的比表面积，在镀液中容易发生团聚现象，因此在实验中加入超声场，通过超声空化效应改善纳米粒子的团聚现象，将纳米粒子有效地分散开来。另外，超声波特有高速微射流，这种高速微射流可以加强溶液搅拌的效果，有利于提高离子的输送能力，利于电极表面的气氛逸出，可以使扩散层的有效厚度减小，加快电极反应过程[14-17]。

本文采用正交实验的方法研究在超声功率为160 W 的工作条件下，镀液温度、阴极电流密度、纳米CeO₂加入量pH 值等四个因素对Ni-Co-CeO₂纳米复合镀层性能的影响，以显微维氏硬度为考察指标，通过极差分析确定最佳实验工艺条件，以求制备出表面平整，致密，显微硬度及耐腐蚀性能优良的Ni-Co-CeO₂纳米复合镀层。

1 试验

1.1 镀层制备

采用尺寸为25 mm×25 mm×3 mm的紫铜板作为基材，尺寸为50 mm×25 mm×2 mm的镍板（纯度≥99.5%）作为基材。镀液的配制方法为，先用去离子水处理，然后在10%HCl溶液中进行活化，后用纯水洗净。电沉积过程采用的纳米CeO₂的粒度为20 nm，电流为直流电流。实验在超声功率为160 W下进行，采用硫酸酸性体系镀液，具体镀液配方为：NiSO₄·6H₂O 300 g/L，NiCl₂·6H₂O 80 g/L，CoSO₄·7H₂O 3 g/L，H₂BO₃ 30 g/L，表面活性剂0.1 g/L。施镀前，纳米CeO₂粒子需在磁力搅拌作用下以150 r/min的速率分散1 h。施镀时间为2 h。

1.2 性能测试及组织观察

采用HVS-1000型显微维氏硬度仪测量试样的显微维氏硬度。采用200 g荷载，时间保持15 s。在显微维氏硬度仪上读出硬度值。在每个试件上取不同区域5个点的硬度值，求平均值，得出平均显微维氏硬度值。采用日本电子公司JSM-6480lv 型的扫描电镜对纳米复合镀层进行表面微观形貌观察。采用美国EDAX公司能谱仪对镀层表面化学成分进行分析。采用荷兰帕纳科公司X’Pert Powder 型X射线衍射分析仪对镀层的物相结构进行分析。采用荷兰AutoLab（PGSTAT302 型）电化学工作站测量纳米复合镀层的 Tafel 曲线，分析纳米复合镀层的耐腐蚀性能。试样腐蚀介质采用3.5%NaCl溶液，测试采用三电极体系，以饱和氯化银电极为参考电极，铂电极为对电极，纳米复合镀层为工作电极，工作面积约为1.00 cm²。所有测试均在室温下完成。极化曲线的扫描电位为−1~0 V，扫描速率为0.1 V/s。测试后，用计算机软件拟合，求出腐蚀电位（Ecorr）和自腐蚀电流密度（Jcorr）等电化学参数。
2 结果及分析

2.1 Ni-Co-CeO₂纳米复合镀层制备工艺优化

采用 L₉(4³)正交实验表, 在超声功率为 160 W 的实验条件下, 取对纳米复合镀层显微维氏硬度有较大影响的镀液温度 (A)、阴极电流密度 (B)、纳米 CeO₂加入量 (C) 和 pH 值 (D) 为四个考察因素，对实验工艺条件进行优选（见表 1）。表 1 中, Kₓ (第 10 列) 表示第 10 列中数字与“r”对应的指标值之和。R 代表极差值, R(第 10 列)表示第 10 列中 K₁、K₂、K₃ 各个平均值中的最大值与最小值之差。以显微维氏硬度为考察指标，经极差分析得出，各因素对镀层显微维氏硬度的影响由大到小依次为 B>B>D>C>A，阴极电流密度为影响最大因素，pH 值、纳米 CeO₂加入量的影响依次减弱, 镀液温度为影响最小因素。最优工艺为 A₂B₂C₂D₁，即镀液温度为 55 ℃, 阴极电流密度为 2 A/cm², 纳米 CeO₂加入量 1 g/L, pH 值为 5。此工艺条件为正交试验中的第 4 组实验, 测得纳米复合镀层的硬度为 486.82HV, 具有最高的硬度。在超声功率为 160 W 的最优条件下制备不加纳米 CeO₂的 Ni-Co 镀层, 测得镀层硬度为 264.34HV, 最优条件下制备的镀层硬度值(486.82HV) 与之相比有较大提高，说明纳米 CeO₂的加入提高了镀层硬度。无超声处理时，最优条件下制备的纳米复合镀层的硬度为 310.62HV, 与之相比，超声条件下的纳米复合镀层硬度 (486.82HV) 更高，说明超声波的加入有利于提高纳米复合镀层的显微维氏硬度。

表 1 Ni-Co-CeO₂纳米复合镀层正交实验结果

<table>
<thead>
<tr>
<th>Number</th>
<th>Temperature (A) / ℃</th>
<th>Current density (B) / (A·dm⁻²)</th>
<th>Concentration of CeO₂ (C) / (g·L⁻¹)</th>
<th>pH (D)</th>
<th>Hardness(HV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50(1)</td>
<td>2(1)</td>
<td>0.5(1)</td>
<td>3.8(1)</td>
<td>254.30</td>
</tr>
<tr>
<td>2</td>
<td>50(1)</td>
<td>3(2)</td>
<td>1(2)</td>
<td>4.2(2)</td>
<td>285.58</td>
</tr>
<tr>
<td>3</td>
<td>50(1)</td>
<td>4(3)</td>
<td>1.5(3)</td>
<td>5(3)</td>
<td>245.74</td>
</tr>
<tr>
<td>4</td>
<td>55(2)</td>
<td>1(2)</td>
<td>1(2)</td>
<td>5(3)</td>
<td>486.82</td>
</tr>
<tr>
<td>5</td>
<td>55(2)</td>
<td>3(2)</td>
<td>1.5(3)</td>
<td>3.8(1)</td>
<td>236.16</td>
</tr>
<tr>
<td>6</td>
<td>55(2)</td>
<td>4(3)</td>
<td>0.5(1)</td>
<td>4.2(2)</td>
<td>285.68</td>
</tr>
<tr>
<td>7</td>
<td>60(3)</td>
<td>2(1)</td>
<td>1.5(3)</td>
<td>4.2(2)</td>
<td>337.62</td>
</tr>
<tr>
<td>8</td>
<td>60(3)</td>
<td>3(2)</td>
<td>0.5(1)</td>
<td>5(3)</td>
<td>292.16</td>
</tr>
<tr>
<td>9</td>
<td>60(3)</td>
<td>4(3)</td>
<td>1(2)</td>
<td>3.8(1)</td>
<td>287.84</td>
</tr>
</tbody>
</table>

K₁	261.21	359.58	277.38	259.43
K₂	356.22	270.63	352.75	302.29
K₃	305.87	273.09	273.17	341.57
R	75.01	88.95	79.58	82.14

注：括号内为对应水平

2.2 Ni-Co-CeO₂纳米复合镀层的微观形貌及成分分析

图 1 为超声条件下制备的 Ni-Co-CeO₂纳米复合镀层的表面微观形貌，由图 1 可以看出，纳米复合镀层表面平整，组织致密。分析表明，在超声场中，超声空化作用使镀层/溶液的界面产生微细扰动，扰乱了扩散层，改变了界面 Ni²⁺的浓度分布和传质过程，降低了镀液的浓差极化。超声空化作用形成的空化气泡在破灭时会产生巨大的冲击波，从而产生巨大的瞬时压力和高温，这会促使镀层表面发生生塑性变形，增加镀层表面的形核中心，提高形核率，有利于镀层的晶粒细化。同时空化作用可以改善纳米颗粒的团聚现象，使得纳米颗粒均匀地分散于镀液中，使单位时间内有更多的纳米颗粒沉积为 Ni-Co-CeO₂纳米复合镀层。与 Ni、Co 共沉积形成的 Ni-Co-CeO₂纳米复合镀层。在超声空化作用下，纳米 CeO₂弥散分布于 Ni-Co-CeO₂纳米复合镀层中，使镀层晶粒细小，呈现球状。

图 2 为超声条件下制备的 Ni-Co-CeO₂纳米复合镀层的能谱图。由图 2 可知，存在 Ce 元素峰，说明
Ni-Co 镀层中含有纳米稀土 CeO₂粒子。即在超声条件下成功制备了 Ni-Co-CeO₂纳米复合镀层。纳米复合镀层的主要组成元素有 Ni、Co、Ce、O，其质量分数分别为 76.48%、4.71%、12.20%、6.61%。自腐蚀电流密度（2.012 μA/cm²）小于 Ni-Co 复合镀层的自腐蚀电流密度（6.305 μA/cm²），说明 Ni-Co-CeO₂纳米复合镀层的耐腐蚀性能优于 Ni-Co 镀层，纳米稀土 CeO₂的加入使镀层的耐腐蚀性能有所改善。分析认为，纳米 CeO₂粒子在提高镀层耐腐蚀性能上起到了很重要的作用，其原因为：（1）纳米 CeO₂粒子在镀层中充当阴性物质阻碍，可以阻碍腐蚀缺陷的产生和腐蚀缺陷的发展；（2）纳米 CeO₂粒子分散在 Ni-Co 镀层中可以形成许多微小的腐蚀电池，这些微小的腐蚀电池促进了阳极极化，因此可以抑制由镀层表面的晶体缺陷和微小孔洞引起的点腐蚀和局部腐蚀的发生，促进镀层表面均匀腐蚀的发生。

图 2 Ni-Co-CeO₂纳米复合镀层的能谱图
Fig.2 EDAX analysis spectrum of the Ni-Co-CeO₂ nanocomposite coatings

图 3 为超声条件下制备的 Ni-Co-CeO₂纳米复合镀层的 XRD 图，分析表明，在 2θ 为 43°、52°附近存在 Ni 的(111)、(200)衍射峰，在 76°附近出现 Co 的 (022)衍射峰，在 38°、51°、72°附近出现纳米稀土 CeO₂的特征衍射峰(111)、(220)和(311)，证明 Ni-Co 镀层中分布了纳米稀土 CeO₂粒子，即在超声条件下成功制备了 Ni-Co-CeO₂纳米复合镀层，与前面的分析结果一致。

图 3 Ni-Co-CeO₂纳米复合镀层的 XRD 图
Fig.3 XRD image of the Ni-Co-CeO₂ nanocomposite coatings

2.3 Ni-Co-CeO₂纳米复合镀层的耐腐蚀性能

在 3.5%NaCl 溶液中，测得了超声条件下制备的 Ni-Co-CeO₂及 Ni-Co 复合镀层的极化曲线（见图 4），通过塔菲尔曲线测得了各镀层的自腐蚀电位 Ecorr、自腐蚀电流密度 jcorr、极化电阻 Rp、塔菲尔斜率 b₁和 b₂（见表 2）。对比分析可知，Ni-Co-CeO₂纳米复合镀层的腐蚀电位（-0.759 V）明显低于 Ni-Co 镀层的腐蚀电位（-0.243 V），Ni-Co-CeO₂纳米复合镀层的自腐蚀电流密度（2.012 μA/cm²）小于 Ni-Co 复合镀层的自腐蚀电流密度（6.305 μA/cm²），说明 Ni-Co-CeO₂纳米复合镀层的耐腐蚀性能优于 Ni-Co 镀层，纳米稀土 CeO₂的加入使镀层的耐腐蚀性能有所改善。分析认为，纳米 CeO₂粒子在提高镀层耐腐蚀性能上起到了很重要的作用，其原因为：（1）纳米 CeO₂粒子在镀层中充当阴性物质阻碍，可以阻碍腐蚀缺陷的产生和腐蚀缺陷的发展；（2）纳米 CeO₂粒子分散在 Ni-Co 镀层中可以形成许多微小的腐蚀电池，这些微小的腐蚀电池促进了阳极极化，因此可以抑制由镀层表面的晶体缺陷和微小孔洞引起的点腐蚀和局部腐蚀的发生，促进镀层表面均匀腐蚀的发生。

图 4 Ni-Co及Ni-Co-CeO₂纳米复合镀层的极化曲线
Fig.4 Polarization curves of pure Ni-Co and Ni-Co-CeO₂ nanocomposite coatings

表 2 Ni-Co及Ni-Co-CeO₂纳米复合镀层的极化曲线结果
Tab.2 Derived results from the Polarization curve of the pure Ni-Co and Ni-Co-CeO₂ nanocomposite coatings

<table>
<thead>
<tr>
<th>Material</th>
<th>Ecorr/ V</th>
<th>jcorr/(μA·cm²)</th>
<th>b₁/(V·dec⁻¹)</th>
<th>b₂/(V·dec⁻¹)</th>
<th>Rp/(Ω·cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-Co</td>
<td>-0.243</td>
<td>6.305</td>
<td>0.025</td>
<td>0.026</td>
<td>52.650</td>
</tr>
<tr>
<td>Ni-Co-CeO₂</td>
<td>-0.759</td>
<td>2.012</td>
<td>0.038</td>
<td>0.037</td>
<td>298.300</td>
</tr>
</tbody>
</table>

3 结论

1）通过正交实验优化实验配方，确定超声功率为 160 W 时，实验的最佳工艺条件为：镀液温度 55℃，电压密度 2 A/dm²，纳米稀土 CeO₂加入量 1 g/L，pH=5。其中，对镀层显微维氏硬度影响最大的因素为电流密度。

2）采用超声纳米复合电镀技术，通过超声场的超声空化效应，改善纳米 CeO₂粒子的团聚现象，强化溶液的搅拌效果，提高镀液中离子的输送能力，使纳米稀土 CeO₂弥散分布于镀层中，获得的镀层表面平整，组织致密，晶粒细小且呈现为球状。

3）纳米稀土 CeO₂的加入，阻碍了复合镀层中腐蚀缺陷的产生和腐蚀缺陷的发展。纳米 CeO₂形成的
微小腐蚀电池促进了阳极极化，抑制了复合镀层中点腐蚀和局部腐蚀的发生，使镀层的显微维氏硬度及耐蚀性能有显著提高。

参考文献: